• Title/Summary/Keyword: calibration facilities

Search Result 48, Processing Time 0.027 seconds

Analysis of Calibration Facilities for Acoustic Doppler Current Profilers (ADCPs) (초음파 도플러 유속계 교정 시설 현황)

  • Lee, Jung-Han;Hwang, Keun-Choon;Kim, Eun-Soo
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.171-183
    • /
    • 2011
  • Despite technological developments and application advances of Acoustic Doppler Current Profilers (ADCPs), no standard procedure has been adopted or accepted for calibration of ADCPs. Limitations of existing facilities for calibrating ADCPs, the complexity of ADCP instruments, and rapid changes in ADCP technology are some of the reasons why a standard procedure has not been adopted. However, there is increasing realization of the need for effective Quality Assurance (QA) and as part of that the importance of standardized calibration. In this study, the significance of calibration and QA plans for ADCPs is discussed and the calibration facilities for ADCPs at home and abroad are reported. Furthermore, the method for calibrating ADCPs using a towed car and its limitations are discussed. This study contributes to discussions surrounding the establishment of standard procedures for calibrating ADCPs and QA plans, and the construction of calibration facilities in the future.

Design, Construction & Operation of Natural Gas Flowmeter Calibration System (천연가스 유량계 교정 시스템의 설계${\cdot}$구축 및 운영)

  • Lee, Seungjun;Lee, Kangjin;Jung, Jongtae;Ha, Youngchul;Ahn, Seunghee;Lee, Chulgu;Her, Jaeyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.389-393
    • /
    • 2001
  • Korea Gas Corporation(KOGAS) have constructed a gas flowmeters' calibration facilities at Jungdong Bucheon. The facilities consisting of 6 reference turbine meters can perform calibrations of large capacity natural gas flowmeters up to $9,600 m^3/h$ at 95 kPa. This large capacity and high pressure natural gas facilities is traceable to the national standard of gas flow rate (KRISS). In this article the motive of construction and description of design are summarized.

  • PDF

Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues (비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발)

  • WooCheol Choi;Tae-Hoon Jeon;Jung-Ho Song;KwangPyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.

Study on the Improvement of Water Quality by the strengthening of T-P effluent standard for Environmental Facilities in Paldang Basin (환경기초시설의 인 기준 강화에 따른 팔당호 유입 수계의 수질개선 효과분석)

  • Jeong, Won-Gu;Han, Young-Han;Rim, Jay-Myung
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.125-135
    • /
    • 2010
  • The influences on water quality of each river by effluents from environmental facilities $located^{*}$ in 14 unit watersheds of North- and South-Han River, and Gyungan-cheon were analyzed. Also, the water quality modeling for study area was carried out to analyze the improvement effect of water quality by the strengthening of T-P effluent standard of environmental facilities. For the calibration and verification of model, water quality data and effluent loading calculated for 2006 were used. Data of low water period were used for calibration, and normal water period for verification. The results of calibration and verification were well matched with the real water quality dataset of revers. Also, the validity of the results were estimated using RI (Reliability Index) method. When the T-P effluent standards for environmental facilities were strengthened, T-P concentrations were predicted to improve from $0.025mg/{\ell}$ to $0.023mg/{\ell}$ in the outlet location of North-Han River, from $0.056mg/{\ell}$ to $0.040mg/{\ell}$ for South-Han River,and from $0.233mg/{\ell}$ to $0.146mg/{\ell}$ for Gyungan-cheon. Also, the T-P concentrations of tributaries including Jojong-cheon, Dal-cheong, Sumgang, Chungmi-cheon, Bokha-cheon, Heuk-cheon, and Wonju-cheon were predicted to improve from $0.063mg/{\ell}$ to $0.010mg/{\ell}$, from $0.091mg/{\ell}$ to $0.053mg/{\ell}$, from $0.199mg/{\ell}$ to $0.100mg/{\ell}$, from $0.168mg/{\ell}$ to $0.148mg/{\ell}$, from $0.186mg/{\ell}$ to $0.105mg/{\ell}$, from $0.019mg/{\ell}$ to $0.013mg/{\ell}$, and from $0.822mg/{\ell}$ to $0.236mg/{\ell}$, respectively.

  • PDF

A Composite Camera Calibration Technique for Thermal Deterioration Diagnosis of Power Distribution Line (배전 선로의 열화 진단을 위한 복합 카메라 보정기법)

  • Jung, Ha-Hyoung;Park, Jin-ha;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.463-469
    • /
    • 2016
  • This paper presents a composite camera calibration method to determine thermal degradation of power distribution equipment by combining an infrared (IR) camera and a color camera. A calibration jig was first constructed to match the properties of the two cameras. Our calibration and visualization techniques allow for the display of two images, one from the color camera and the other from the IR camera with different field of views (FOVs), on the screen at the same time. To confirm its validity, several case studies have been developed to analyze thermal deterioration limits of indoor and outdoor power distribution facilities.

Analysis of the Phosphorus Contribution Rate by the Environment Fundamental Facilities Located in Upstream Basin of Paldang Lake (팔당호 상류수계에 위치한 환경기초시설의 인 기여도 분석)

  • Woo, Younggug;Park, Eunyoung;Jeon, Yangkun;Yang, Heejeong;Rim, Jaymyung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1016-1027
    • /
    • 2010
  • The phosphorus contribution rate on water quality of North and South-Han River, and Gyungan-cheon by effluents from environmental fundamental facilities located in upstream basin of Paldang Lake were analyzed. QUALKO2 model was selected for the analysis of contrubution rate, and was constructed considering the location of the main point sources and all facilities in study area. The pollutant loading rates and arrival rates for each unit-watershed in study area were calculated for model operation. For the calibration and verification of model, 2006 water quality dataset from Ministry of Environment and the effluent loadings of the environmental fundamental facilities were used. Reliability Index (RI) method was used to estimate the validity of the results of calibration and verification. The phosphorous contribution rate(%) for each environmental fundamental facility were analyzed by excepting the effluent loading of the facility. The contribution rate was analyzed for each facility, facility groups separated by each main river and each unit-watershed. The main results of analysis for each facility are as follows; (i) the phosphorous contribution of B1 facility is 50%, which is the highest phosphorous contribution rate among those of nine facilities in the North-Han River Basin; (ii) the highest phosphorous contribution is 55.6% from J facility among eight facilities in the Gyungan Stream Basin; (iii) 40% from E treatment facility is the highest among those of twenty eight facilities in the South-Han River Basin.

The Fish-eye Lens Distortion Correction of Facilities Monitoring CCTV (시설물 감시용 CCTV의 초광각 렌즈 왜곡보정)

  • Kang, Jin-A;Nam, Sang-Kwan;Kim, Tae-Hoon;Oh, Yoon-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • The demand that we are monitoring security and crime of the urban facilities is increasing recently, but the using CCTV devices are expensive. In this research, we enlarge the angle of view using the Fish-eye Lens and the Photogrammetry, the efficiency of monitoring enhance. First, we carry out the calibration of the Fish-eye Lens indoors, we calculate the correction parameters, and then covert the original image-point to new image-point correcting distortion. Second, the correction program with the correction parameters can obtain the real-time correcting image. Lastly, for authorization the developed program we compare correcting-image with scanning-imge, it is showed the RMSE is 3.2pixel.

Prediction of Heavy Metal Content in Compost Using Near-infrared Reflectance Spectroscopy

  • Ko, H.J.;Choi, H.L.;Park, H.S.;Lee, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1736-1740
    • /
    • 2004
  • Since the application of relatively high levels of heavy metals in the compost poses a potential hazard to plants and animals, the content of heavy metals in the compost with animal manure is important to know if it is as a fertilizer. Measurement of heavy metals content in the compost by chemical methods usually requires numerous reagents, skilled labor and expensive analytical equipment. The objective of this study, therefore, was to explore the application of near-infrared reflectance spectroscopy (NIRS), a nondestructive, cost-effective and rapid method, for the prediction of heavy metals contents in compost. One hundred and seventy two diverse compost samples were collected from forty-seven compost facilities located along the Han river in Korea, and were analyzed for Cr, As, Cd, Cu, Zn and Pb levels using inductively coupled plasma spectrometry. The samples were scanned using a Foss NIRSystem Model 6500 scanning monochromator from 400 to 2,500 nm at 2 nm intervals. The modified partial least squares (MPLS), the partial least squares (PLS) and the principal component regression (PCR) analysis were applied to develop the most reliable calibration model, between the NIR spectral data and the sample sets for calibration. The best fit calibration model for measurement of heavy metals content in compost, MPLS, was used to validate calibration equations with a similar sample set (n=30). Coefficient of simple correlation (r) and standard error of prediction (SEP) were Cr (0.82, 3.13 ppm), As (0.71, 3.74 ppm), Cd (0.76, 0.26 ppm), Cu (0.88, 26.47 ppm), Zn (0.84, 52.84 ppm) and Pb (0.60, 2.85 ppm), respectively. This study showed that NIRS is a feasible analytical method for prediction of heavy metals contents in compost.

Calculation of Energy Dependence of Calibration Constants in the Continuous Radioactive Effluent Monitors (연속방사능(連續放射能) 측정감시기(測定監視器)에서 교정상수(較正常數)의 에너지의존성(依存性) 계산(計算))

  • Lee, Soo-Yong;Yook, Chong-Chul;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.41-44
    • /
    • 1981
  • A method is presented by which precise evaluation of radioactive concentrations in liquid or gaseous effluent released from large nuclear facilities is possible. Calculations have been made of the calibration constants at different energies for a commonly used liquid and gaseous effluent monitors as well. It is expected that the method could be applicable to the particular monitors with different geometrical configuration with simple modifications.

  • PDF