• Title/Summary/Keyword: calculation of elapsed time

Search Result 22, Processing Time 0.025 seconds

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy (근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.633-640
    • /
    • 2023
  • With the recent development of static and dynamic modulated brachytherapy methods in brachytherapy, which use radiation shielding to modulate the dose distribution to deliver the dose, the amount of parameters and data required for dose calculation in inverse treatment planning and treatment plan optimization algorithms suitable for new directional beam intensity modulated brachytherapy is increasing. Although intensity-modulated brachytherapy enables accurate dose delivery of radiation, the increased amount of parameters and data increases the elapsed time required for dose calculation. In this study, a GPU-based CUDA-accelerated dose calculation algorithm was constructed to reduce the increase in dose calculation elapsed time. The acceleration of the calculation process was achieved by parallelizing the calculation of the system matrix of the volume of interest and the dose calculation. The developed algorithms were all performed in the same computing environment with an Intel (3.7 GHz, 6-core) CPU and a single NVIDIA GTX 1080ti graphics card, and the dose calculation time was evaluated by measuring only the dose calculation time, excluding the additional time required for loading data from disk and preprocessing operations. The results showed that the accelerated algorithm reduced the dose calculation time by about 30 times compared to the CPU-only calculation. The accelerated dose calculation algorithm can be expected to speed up treatment planning when new treatment plans need to be created to account for daily variations in applicator movement, such as in adaptive radiotherapy, or when dose calculation needs to account for changing parameters, such as in dynamically modulated brachytherapy.

A Comparative Analysis of Time in Elementary Mathematics Textbooks (시각과 시간에 대한 우리나라 초등학교 수학 교과서 분석)

  • Nam, Jihyun;Chang, Hyewon
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.513-531
    • /
    • 2017
  • This study aims to analyze and compare Korean mathematics textbooks on time and to induce its educational implications. Concretely, the mathematics textbooks from the 1st to the 2009 national revised curriculum were selected for the longitudinal analysis. In each textbook, the contents such as clock reading, units of time, and calculation of elapsed time among various contents about time were chosen. The learning elements and their teaching sequence, the teaching method (the introducing ways of each concept and principle), and the didactical representations are set as an analysis framework. The results of analysis revealed many characteristics and differences in ways of dealing contents about time. Based on these results, we suggested several implications for writing the unit of time in elementary mathematics textbooks and teaching about time in classrooms.

Analysis on Mathematical Understanding of Elementary School Students about Time (시각과 시간에 대한 초등학생의 수학적 이해 분석)

  • Nam, Jihyun;Chang, Hyewon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.3
    • /
    • pp.479-498
    • /
    • 2016
  • Time is important in children's lives since their preschool years. However, previous studies indicate that many children struggle with the acquisition of time concepts. Also teachers do not know how to help them. This study aims to investigate elementary school students' understanding about time and induce its educational implications. To do this, about 130 children from first to fifth grades were tested for their ability to recognize(read and record) the analogue and digital times and to solve elapsed-time problems. The results showed that even first graders were able to read and record the minute times on digital clocks. And second graders were able to read and record the minute times on analogue clocks. Therefore, the ability to recognize analogue times was mastered by second grade. In case of the elapsed-time problems, there was statistically significant difference according to school years or types of problems. Students were successful in solving simple problems. However, the problems that include regrouping hour and minute remained difficult even for the older children. Based on these results, we made a few suggestions for teaching practice about time.

THIN SHELL FORMATION TIME AND [OIII] LINE IN FAST WIND BUBBLE (빠른 항성풍 거품의 구각형성 시각과 [OIII]선의 형성)

  • Choi, Seung-Eon;Lee, Yeong-Jin
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.91-107
    • /
    • 1996
  • We determine analytically the onset of thin-shell formation time of fast wind bubble with power-law energy injection $E_{in}=E_0t^s$, and power-law ambient density structure, ${\rho}_0(r)={\bar{\rho}}(r/{\bar{r}})^{-{\omega}}$. Thin-shell formation time, $t_{sf}$ can be estimated by minimizing the total time elapsed before the complete cooling of shocked gas. For uniform medium (${\omega}=0$) and constant energy injection (s = 1), the onset of shell formation is found to be at $t_{sf}=5.2{\times}10^3yr$, which agrees Quite well with the results of FCT 1D numerical calculation. We solve the line transfer problem with previous result derived by numerical calculation in order to calculate line profile of [OIII] (${\lambda}=5007{\AA}$) forbidden line. In general, radiative outer shell causes the formation of double peaked line profile. Each peak corresponds to approaching and receeding shells with large velocities. Our line profiles show good agreements with observation of expanding shell structure.

  • PDF

Analysis and Design of a Pneumatic Vibration Isolation System: Part I. Modeling and Algorithm for Transmissibility Calculation (공압 제진 시스템의 해석과 설계: I. 모델링과 전달율 계산 알고리즘)

  • Moon Jun Hee;Pahk Heui Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.127-136
    • /
    • 2004
  • This paper is the first of two companion papers concerning the analysis and design of a pneumatic vibration isolation system. The design optimization of the pneumatic vibration isolation system is required for the reduction of cost, endeavor and time, and it needs modeling and calculation algorithm. The nonlinear models are devised from the fluid mechanical expression for components of the system and the calculation algorithm is derived from the mathematical relationship between the models. It is shown that the orifice makes the nonlinear property of the transmissibility curve that the resonant frequency changes by the amplitude of excited vibration. Linearization of the nonlinear models is tried to reduce elapsed time and truncation error accumulation and to enable the transmissibility calculation of the system with multi damping chambers. The equivalent mechanical models generated by linearization clarify the function of each component of the system and lead to the linearized transfer function that can give forth to the transmissibility exactly close to that of nonlinear models. The modified successive under-relaxation method is developed to calculate the linearized transfer function.

COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

  • Kim, Jong Woon;Hong, Ser Gi;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.263-272
    • /
    • 2014
  • Scattering source calculations using conventional spherical harmonic expansion may require lots of computation time to treat full-coupled three-dimensional photon-electron transport in a highly anisotropic scattering medium where their scattering cross sections should be expanded with very high order (e.g., $P_7$ or higher) Legendre expansions. In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17~42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

A Study on the Optimal Allocation of Irregular Shapes and Cutting Path Optimization (임의 형상 부재의 최적배치 및 절단 경로 최적화에 관한 연구)

  • 한윤근;장창두
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.27-33
    • /
    • 1999
  • This paper describes a new algorithm for irregular shapes allocation (known as nesting) and cutting path optimization, both implemented in PC-based software with graphic user interface (GUI). Main characteristic of the nesting W is that it deals with only vertices of Placed Pieces to reduce calculation time and for effective allocation. And the other characteristic of the nesting program is that every parts are grouped with respect to their areas and placed along the column of placement region. The cutting paths can be determined by an optimization method called simulated annealing. It was shown that the developed code is superior to other previous nesting H in elapsed time and waste ratio.

  • PDF

The Development of the Method of Determining Remaining Cited-patent Life Time Using the Survival Curve Analysis (생존곡선을 활용한 잔존 인용특허 수명 추정에 관한 연구)

  • Jun, Seung-Pyo;Park, Hyun-Woo;Yoo, Jae Young
    • Journal of Korea Technology Innovation Society
    • /
    • v.15 no.4
    • /
    • pp.745-765
    • /
    • 2012
  • When attempting to use the income approach for the purpose of technology valuation, it is essential to identify the economic life of the technology in question. From the mid-2000s up to the present, the methods proposed by major Korean institutions for estimating the economic life of technologies have been based on cited patent life (CLT), which is one of the types of technology life. The present study utilizes cited patent life (CLT) to estimate the economic life of technology for the purpose of technology valuation, and proposes a new method of analyzing cited patent life, a method that has been improved by taking into consideration the elapsed period and the time period of investment required for commercialization, two factors which have been hitherto overlooked. Survival curve analysis is a method that has already been widely utilized to estimate the economic life of tangible assets, and this study applies the same method to the calculation of the cited patent life index of technology to provide a more objective method for determining the lifetime of a technology. The remaining life expectancy of cited patent life based on the number of elapsed years was calculated and used to determine the life expectancy of a technology that has reached a specific number of elapsed years, which is referred to as the remaining cited-patent life time (r-CLT).

  • PDF

Development of an Analysis Program for Pedestrian Flow based on the Discrete Element Method (이산요소법을 이용한 보행류 해석 프로그램 개발)

  • Nam, Seong-Won;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3197-3202
    • /
    • 2007
  • An analysis program for pedestrian flow has been developed to investigate the flow patterns of passenger in railway stations. Analysis algorithms for pedestrian flow based on DEM(Discrete Element Method) are newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.

  • PDF