• Title/Summary/Keyword: calculation models

Search Result 1,092, Processing Time 0.024 seconds

Comparison of the 2D/3D Acoustic Full-waveform Inversions of 3D Ocean-bottom Seismic Data (3차원 해저면 탄성파 탐사 자료에 대한 2차원/3차원 음향 전파형역산 비교)

  • Hee-Chan, Noh;Sea-Eun, Park;Hyeong-Geun, Ji;Seok-Han, Kim;Xiangyue, Li;Ju-Won, Oh
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.203-213
    • /
    • 2022
  • To understand an underlying geological structure via seismic imaging, the velocity information of the subsurface medium is crucial. Although the full-waveform inversion (FWI) method is considered useful for estimating subsurface velocity models, 3D FWI needs a lot-of computing power and time. Herein, we compare the calculation efficiency and accuracy of frequency-domain 2D and 3D acoustic FWIs. Thereafter, we demonstrate that the artifacts from 2D approximation can be partially suppressed via frequency-domain 2D FWI by employing diffraction angle filtering (DAF). By applying DAF, which employs only big reflection angle components, the impact of noise and out-of-plane reflections can be reduced. Additionally, it is anticipated that the DAF can create long-wavelength velocity structures for 3D FWI and migration.

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li;Xing-Kang Su;Long Gu;Xiang-Yang Wang;Da-Jun Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1802-1813
    • /
    • 2023
  • Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction (해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구)

  • Dae-yaoung Eeom;Bang-hee Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.100-103
    • /
    • 2023
  • Recently, development of maritime autonomoust surface ships and eco-friendly ships, production and evaluation research considering various marine environments is needed in the field of optimal routes as the demand for accurate and detailed real-time marine environment prediction information expands. An algorithm that can calculate the optimal route while reducing the risk of the marine environment and uncertainty in energy consumption in smart ships was developed in 2 stages. In the first stage, a profile was created by combining marine environmental information with ship location and status information within the Automatic Ship Identification System(AIS). In the second stage, a model was developed that could define the marine environment energy map using the configured profile results, A regression equation was generated by applying Random Forest among machine learning techniques to reflect about 600,000 data. The Random Forest coefficient of determination (R2) was 0.89, showing very high reliability. The Dijikstra shortest path algorithm was applied to the marine environment prediction at June 1 to 3, 2021, and to calculate the optimal safety route and express it on the map. The route calculated by the random forest regression model was streamlined, and the route was derived considering the state of the marine environment prediction information. The concept of route calculation based on real-time marine environment prediction information in this study is expected to be able to calculate a realistic and safe route that reflects the movement tendency of ships, and to be expanded to a range of economic, safety, and eco-friendliness evaluation models in the future.

  • PDF

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.

Assessing the Applicability of Hysteresis Indices for the Interpretation of Suspended Sediment Dynamics in a Forested Catchment (산림유역의 부유토사 동태 해석을 위한 이력현상 지수의 적용성 평가)

  • Ki-Dae Kim;Su-Jin Jang;Soo-Youn Nam;Jae-Uk Lee;Suk-Woo Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.178-188
    • /
    • 2024
  • The dynamics of suspended sediment (SS) in forested catchments vary depending upon human or natural disturbances, including land use change, forestry activity, forest fires, and landslides. Understanding the dynamics of SS originating from the potential sources within a forested catchment is crucial for establishing an effective water quality management strategy. Therefore, to suggest a systematic method for interpreting SS dynamics, we evaluated the performance and applicability of ten methods for calculating the hysteresis index based on observed hydrological data and two calculation models (Lawler's method and Lloyd's method) with five sampling intervals (50th, 25th, 10th, 5th, and 1st percentiles). Our results showed that Lloyd's method, which used a sampling interval at the 1st percentile, had the largest number of analyzable runoff events and exhibited the best performance. The results of this study can contribute to quantifying the hysteresis in the relationship between discharge and SS and provide useful information for interpreting SS dynamics.

Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo (함경북도 내 미래 알팔파 재배의 기후적합도 앙상블 전망)

  • Hyun Seung Min;Hyun Shinwoo;Kim Kwang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.71-82
    • /
    • 2024
  • It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.

Methodology for Generating UAV's Effective Flight Area that Satisfies the Required Spatial Resolution (요구 공간해상도를 만족하는 무인기의 유효 비행 영역 생성 방법)

  • Ji Won Woo;Yang Gon Kim;Jung Woo An;Sang Yun Park;Gyeong Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.400-407
    • /
    • 2024
  • The role of unmanned aerial vehicles (UAVs) in modern warfare is increasingly significant, making their capacity for autonomous missions essential. Accordingly, autonomous target detection/identification based on captured images is crucial, yet the effectiveness of AI models depends on image sharpness. Therefore, this study describes how to determine the field of view (FOV) of the camera and the flight position of the UAV considering the required spatial resolution. Firstly, the calculation of the size of the acquisition area is discussed in relation to the relative position of the UAV and the FOV of the camera. Through this, this paper first calculates the area that can satisfy the spatial resolution and then calculates the relative position of the UAV and the FOV of the camera that can satisfy it. Furthermore, this paper propose a method for calculating the effective range of the UAV's position that can satisfy the required spatial resolution, centred on the coordinate to be photographed. This is then processed into a tabular format, which can be used for mission planning.

The Budget of Nutrients in the Estuaries Near Mokpo Harbor (목포항 주변 하구역의 영양염 수지)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Oh, Hyun-Taik;Jeon, Seung-Ryul;Choi, Yong Hyeon;Han, Hyoung-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.708-722
    • /
    • 2016
  • Land-Ocean Interactions in the Coastal Zone (LOICZ) models for nutrient budgets were used to estimate the seasonal capacity of the Youngsan Estuary and Youngam-Geumho Estuary to sink and/or supply nutrients such as dissolved inorganic phosphorus (DIP) and nitrogen (DIN) to provide an understanding of the behavior of the coupled biogeochemical cycles of phosphorus and nitrogen in the estuaries (Youngsan Estuary, Youngam-Geumho Estuary) near Mokpo Harbor. During non-stratified periods (May, September, and November, 2008), simple three-box models were applied in each sub-region of the system, while a two-layer box model was applied during on-site observation of stratification development (July, 2008). The resulting mass-balance calculation indicated that even after large discharges from artificial lakes (in May and July), DIP influxes due to a mixing exchange ($V_{X-3}$, or $V_{deep}$) were more than terrigenous loads, indicating the backward transportation of nutrients from a marine source. The model results also indicated that for nutrient loads (DIP and DIN fluxes) in September, an extreme congestion of nutrients occurred around the mouths (sub-region III of the model) of the estuaries, possibly due to an imbalance in physical circulations between the estuaries and offshore locations. In November, the Youngam-Geumho Estuary, into which freshwater was discharged from artificial lakes (Youngam and Geumho Lake), showed nutrient enrichment in the water column, but the Youngsan Estuary showed nutrient depletion. In conclusion, to efficiently control water quality in the estuaries near Mokpo Harbor, integrated environmental management programs should be implemented. I.e., the reduction of nutrient loads from land basins as well as the deposit of nutrient loads into adjacent coastal lines.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Development and Testing of the Model of Health Promotion Behavior in Predicting Exercise Behavior

  • O'Donnell, Michael P.
    • Korean Journal of Health Education and Promotion
    • /
    • v.2 no.1
    • /
    • pp.31-61
    • /
    • 2000
  • Introduction. Despite the fact that half of premature deaths are caused by unhealthy lifestyles such as smoking tobacco, sedentary lifestyle, alcohol and drug abuse and poor nutrition, there are no theoretical models which accurately explain these health promotion related behaviors. This study tests a new model of health behavior called the Model of Health Promotion Behavior. This model draws on elements and frameworks suggested by the Health Belief Model, Social Cognitive Theory, the Theory of Planned Action and the Health Promotion Model. This model is intended as a general model of behavior but this first test of the model uses amount of exercise as the outcome behavior. Design. This study utilized a cross sectional mail-out, mail-back survey design to determine the elements within the model that best explained intentions to exercise and those that best explained amount of exercise. A follow-up questionnaire was mailed to all respondents to the first questionnaire about 10 months after the initial survey. A pretest was conducted to refine the questionnaire and a pilot study to test the protocols and assumptions used to calculate the required sample size. Sample. The sample was drawn from 2000 eligible participants at two blue collar (utility company and part of a hospital) and two white collar (bank and pharmaceutical) companies located in Southeastern Michigan. Both white collar site had employee fitness centers and all four sites offered health promotion programs. In the first survey, 982 responses were received (49.1%) after two mailings to non-respondents and one additional mailing to secure answers to missing data, with 845 usable cases for the analyzing current intentions and 918 usable cases for the explaining of amount of current exercise analysis. In the follow-up survey, questionnaires were mailed to the 982 employees who responded to the initial survey. After one follow-up mailing to non-respondents, and one mailing to secure answers to missing data, 697 (71.0%) responses were received, with 627 (63.8%) usable cases to predict intentions and 673 (68.5%) usable cases to predict amount of exercise. Measures. The questionnaire in the initial survey had 15 scales and 134 items; these scales measured each of the variables in the model. Thirteen of the scales were drawn from the literature, all had Cronbach's alpha scores above .74 and all but three had scores above .80. The questionnaire in the second mailing had only 10 items, and measured only outcome variables. Analysis. The analysis included calculation of scale scores, Cronbach's alpha, zero order correlations, and factor analysis, ordinary least square analysis, hierarchical tests of interaction terms and path analysis, and comparisons of results based on a random split of the data and splits based on gender and employer site. The power of the regression analysis was .99 at the .01 significance level for the model as a whole. Results. Self efficacy and Non-Health Benefits emerged as the most powerful predictors of Intentions to exercise, together explaining approximately 19% of the variance in future Intentions. Intentions, and the interaction of Intentions with Barriers, with Support of Friends, and with Self Efficacy were the most consistent predictors of amount of future exercise, together explaining 38% of the variance. With the inclusion of Prior Exercise History the model explained 52% of the variance in amount of exercise 10 months later. There were very few differences in the variables that emerged as important predictors of intentions or exercise in the different employer sites or between males and females. Discussion. This new model is viable in predicting intentions to exercise and amount of exercise, both in absolute terms and when compared to existing models.

  • PDF