• Title/Summary/Keyword: calculated odor intensity

Search Result 9, Processing Time 0.027 seconds

Odor Characteristics of Malodorous Sulfur-containing Gas Emitted from a Sewer and Its Outlets (하수관거 및 토구에서 발생하는 유황계 화합물 악취특성)

  • Park, Sang Jin;Kwon, Soo Youl
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.6
    • /
    • pp.477-483
    • /
    • 2014
  • Objectives: This study was carried out to investigate the characteristics of odors emitted from sewage in a sanitary sewer and its outlets. Methods: The concentration of mal-odorous sulfur was analyzed by gas chromatograph, and odor intensity was estimated by an on-site sensory test. Odor intensity calculated from instrumental analysis results was compared with odor intensity observed at field. Results: As a results, the concentration of $H_2S$ ranged from 2.4 ppb to 5,889 ppb (average 703 ppb), while $CH_3SH$, $(CH_3)_2S$, and $(CH_3)_2S_2$ showed from 10 ppb to 554 ppb (average 119 ppb) and from 20 ppb to 332 ppb (average 70 ppb) and from 2.7 ppb to 8.1 ppb (average 5 ppb) individually. Average odor intensity observed in the field was degree three. Odor intensity calculated from sulfur compound concentration was confirmed as similar to the observed odor intensity because the coefficient of variance between the observed and the calculated intensities was less than one. Conclusion: It was expected that the results of this study will be helpful to design a deodorizing device to reduce odor emissions from sewerage facilities in the future.

Experimental Study on Hydrogen Sulfide Abatement in Sewage Odor Using Microbial Deodorants on the Market (시판용 미생물탈취제를 이용한 하수 악취 내 황화수소 저감에 관한 실험적 연구)

  • Park, Sang Jin;Kwon, Soo Youl
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.170-183
    • /
    • 2020
  • Objectives: This study was conducted to estimate a technology to reduce hydrogen sulfide (H2S) in sewage odor using microbial deodorant. Methods: After injecting five commercially available microbial deodorants into fresh sewage, the concentration of hydrogen sulfide over time was measured using the headspace method. H2S concentration in odor samples was measured using gas chromatograph/FPD. Calculated odor concentration and calculated odor intensity by H2S concentration remaining after treatment with microbial deodorant were evaluated theoretically. Results: The rate of H2S abatement by microbial deodorant differed depending on the experimental conditions and the type of deodorant, but it was found to range from 63 to 82%. Especially, two deodorants showed high H2S reduction rates of over 80% on average. However, based on the best deodorant, the theoretically calculated odor concentration by H2S after microbial deodorant treatment was 4,400 OUk, and the theoretical odor intensity was also rated at 4 degrees or higher. Conclusions: In conclusion, microbial deodorant is considered to have a relatively high effect on reducing H2S in sewage odor. However, even after treatment with microbial deodorant, calculated odor concentration and calculated odor intensity were relatively high. This is thought to be caused by other odorous substances besides H2S.

Research on Odor Analysis Technology to Secure the Reliability of Air Quality Improvement in Air Conditioners (에어컨디셔너 공기질 개선의 신뢰도 확보를 위한 냄새 분석 기술 연구)

  • Kang, Seok-Hyun;Huh, Pil-Ho;Ahn, Young-Chull
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the odor of the parts and the odor of the surrounding environment were classified and verified. In order to increase the reliability of odor quantitative/qualitative analysis, the selection criteria for 5 sensory evaluators were established, and the n-Butanol control solution for each odor intensity was periodically trained to recognize the odor intensity before sensory evaluation. In addition, although various odor thresholds have been used through several studies, verification of whether the odor intensity value obtained through GC/MSD analysis is similar to the degree to which a person directly smells and feels it. It is important to select the odor threshold that has the best correlation with the odor intensity calculated by the person smelling the odor. Finally, sampling and measuring flowing airflow and temporary odors such as odor component analysis was experimentally difficult due to limited collection space and differences in concentration of generated components. In this study, a quantitative analysis was made possible by using the low temperature concentration (cooling) trap method. Through this, it was confirmed that the correlation with the actual odor intensity was not caused by the product itself, but by the environmental factor discharged from the product after creating the odor environment.

Emission Characteristics of Odor Compounds from Fundamental Environmental Facilities in an Industrial Complex Area in Daegu City (대구시 산업단지 환경기초시설의 악취발생 특성)

  • Lee, Chan-Hyung;Jeon, Hyun-Sook;Shin, Myung-Cheol;Kim, Eun-Deok;Jang, Yun-Jae;Kwon, Byoung-Youne;Song, Hee-Bong
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.4
    • /
    • pp.246-254
    • /
    • 2016
  • Objectives: This study evaluated the odor emission characteristics from fundamental environmental facilities at an industrial complex area in Daegu City. Methods: The odor samples were collected from May 2015 to January 2016 and were analyzed for specified offensive odor substances. The odor quotient and the odor contribution was calculated. Results: Ammonia was detected in all samples monitoring specified odor compounds, followed by hydrogen sulfide and acetaldehyde. According to contribution analysis, hydrogen sulfide shows the highest contribution in all facilities. At wastewater treatment plants A and B and sewage treatment plant F, it was followed by acetaldehyde. At wastewater treatment plant C, it was followed by imethyl sulfide. Conclusion: The major component of odor can be determined by evaluating the degree of contribution to the odor intensity rather than the concentration of the individual odor components. To increase the effectiveness of odor reduction, policies focused on materials with a high odor contribution are needed rather than focusing on high-concentration odor compounds.

Emission Characteristics of Odor Compounds from a Dyeing Wastewater Treatment Plant in an Industrial Complex Area in Daegu City (대구시 산업단지 염색폐수처리장의 악취발생 특성)

  • Lee, Chan-Hyung;Jeon, Hyun-Sook;Kwon, Byoung-Youne;Kim, Eun-Deok;Jang, Yun-Jae;Lee, Myeong-Sug;Keum, Jong-Lok;Song, Hee-Bong
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.314-323
    • /
    • 2017
  • Objectives: This study evaluated the odor emission characteristics from a wastewater treatment plant in an industrial complex area in Daegu City. Methods: Odor samples were collected from March 2016 to December 2016 and were analyzed for specified offensive odor substances. The odor quotient and the odor contribution was calculated. Results: Ammonia, hydrogen sulfide, acetaldehyde, and toluene were detected in all samples for monitoring specified odor compounds. The result of contribution analysis is that hydrogen sulfide had the highest contribution in all processes, followed by acetaldehyde. Conclusion: The major components of odor can be determined by evaluating the degree of contribution to the odor intensity and the concentration of the individual odor component. To increase the effectiveness of odor reduction, rather than addressing high-concentration odor compounds, policies focused on materials with a high odor contribution are necessary.

Emission Characteristics of Odor Compounds from a Sewage Treatment Plant Near an Industrial Complex Area in Daegu City (대구시 산업단지 인근 하수처리장의 악취발생 특성)

  • Lee, Myeong-Sug;Kang, Dong-Hoon;Keum, Jong-Lok;Kwon, Byoung-Youne;Jo, Hang-Wook;Lee, Chan-Hyung;Kim, Eun-Deok;Lim, Ho-Jin;Song, Hee-Bong
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.178-187
    • /
    • 2018
  • Objectives: This study evaluated the odor emission characteristics from a sewage treatment plant near an industrial complex area in Daegu City. Methods: Odor samples were collected from March 2017 to December 2017 and analyzed for specified offensive odor substances. The odor quotient and the odor contribution were calculated. Results: Ammonia, methyl mercaptane, hydrogen sulfide, dimethyl sulfide, acetaldehyde, propionylaldehyde, toluene, xylene, and methylethylketone were detected in all samples for monitoring the specified odor compounds. The result of contribution analysis is that hydrogen sulfide made the highest contribution in all processes, followed by acetaldehyde. Conclusion: The major components of odor can be determined by evaluating their degree of contribution to the odor intensity and the concentration of the individual odor component. To increase the effectiveness of odor reduction, rather than addressing high-concentration odor compounds, policies focused on materials with a high odor contribution are necessary.

Development of non-dairy creamer analogs/mimics for an alternative of infant formula using egg white, yolk, and soy proteins

  • Huang, Xi;Lee, Eun Joo;Ahn, Dong U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.881-890
    • /
    • 2019
  • Objective: A study was conducted to develop non-dairy creamer analogs/mimics using egg white, egg yolk, soy protein and their combinations, and their nutrient content, shelf-life and flavor acceptability were compared. Methods: Spray dried egg white, egg yolk, and soy protein isolate were purchased from manufacturers and used for the formulae. Results: The protein contents of the non-dairy creamer analogs/mimics were about 8.5% as calculated. The amounts of oleic and linoleic acid content increased as the amount of yolk increased in the formula, but the increases of polyunsaturated fatty acids were <0.5% of total fat. Addition of egg yolk to the formula increased choline and lutein content in the products, but the amounts were <0.4 mg/g for choline and $4{\mu}g/g$ for lutein. The lutein in the products continued to decrease over the storage time, and only about 15% to 20% of the 0-month amounts were left after 3 months of storage. Although the thiobarbituric acid reactive substances values of the spray-dried non-dairy creamer analogs/mimics increased as storage time increased, the values were still low. Yellowness, darkness, and egg flavor/odor of the non-dairy creamer analogs/mimics increased as the amount of egg yolk in the formula increased. The overall acceptability of the non-dairy creamer analogs/mimics was closely related to the intensity of egg flavor/odor, but storage improved their overall acceptance because most of the off-odor volatiles disappeared during the storage. Water temperature was the most important parameter in dissolving spray-dried non-dairy creamer analogs/mimics, and $55^{\circ}C$ to $75^{\circ}C$ was the optimal water temperature conditions to dissolve them. Conclusion: Higher amounts of yolk and soy protein combinations in place of egg white reduced the cost of the products significantly and those products contained better and balanced nutrients than the commercial coffee creamers. However, off-flavor and solubility were two important issues in the products.

Characteristic of Odorous Compounds Emitted from Livestock Waste Treatment Facilities Combined Methane Fermentation and Composting Process (메탄발효와 퇴비화 공정이 연계된 가축분뇨 처리시설에서 발생되는 악취물질 특성 조사)

  • Ko, Han Jong;Kim, Ki Youn;Kim, Hyeon Tae;Ko, Moon Seok;Higuchi, Takasi;Umeda, Mikio
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.391-400
    • /
    • 2008
  • Odor management is significantly concerned with sustainable livestock production because odor nuisance is a primary cause for complaint to neighbors. This study was conducted to measure the concentration of odorous compounds, odor intensity, and odor offensiveness at unit process in animal waste treatment facility combined composting and methane fermentation process by an instrumental analysis and direct olfactory method. Ammonia, sulfur-containing compounds, and volatile fatty acid were analyzed at each process units and boundary area in summer and winter, respectively. Higher concentration of odorants occurred in the summer than in the winter due to high ambient temperature. The maximum concentration of odorants was detected in composting pile when mixed manure was being turned followed by inlet, curing, outlet, and screen & packing process. Highest concentration of detected odorous compounds was ammonia ranging from 3.4 to 224.7 ppm. Among the sulfur-containing compounds measured, hydrogen sulfide was a maximum level of 2.3 ppm and most of them exceeded reported odor detection thresholds. Acetic acid was the largest proportion of VFA generated, reaching a maximum of 51 to 89%, followed by propionic and butyric acid at 1.9 to 35% and 1.8 to 15%, respectively. Malodor assessment by a human panel appeared a similar tendency in instrumental analysis data. Odor quotient for predicting major odor-causing compounds was calculated by dividing concentrations measured in process units by odor detection thresholds. In the composting process, hydrogen sulfide, ammonia, dimethyl sulfide, and methyl mercaptan were deeply associated with odor-causing compounds, while the major malodor compounds in the inlet process were methyl mercaptan, hydrogen sulfide, and butyric acid.

Worker Health Hazard and Risk Assessment of Formamide using in Workplaces in South Korea (작업장에서 사용하는 포름아미드(Formamide)의 근로자 건강 유해성과 위험성 평가)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.35-42
    • /
    • 2016
  • Formamide is a colorless fluid with ammonia odor, and irritable when inhaled. It has $LD_{50}$ value of > 5,577 mg/kg in rats for acute oral toxicity and NOAEL of 113 mg/kg/day for target organ (liver) of whole body toxicity. It is also known as reproductive toxicant (1B) and TWA(Time Weighted Average) for it is 10 ppm. Workplace measurements of work places dealing with formamide showed the ppm of all 25 samples was very lower than WEL. However, the exposure concentration can change, depending on workplace condition such as the intensity of work, operating local ventilation system, and wearing protection equipment (Respirators). Therefore, considering it with the risk of whole body toxicity and reproductive toxicity, exposure quantity of each imaginary scenario was calculated at 5.16, 1.72, and $0.43mg/m^3$. The average value was calculated at 0.02-0.58, 0.02-0.66 at 90 percent of cumulative distribution, 0.02-0.69 at 95 percent of cumulative distribution. Therefore, it was generally evaluated to be safe because all values were below 1. However, caution is required to prevent health hazard because it has hepatotoxicity and reproductive toxicity and risk of a high level momentary exposure, depending on the condition of workplace.