• 제목/요약/키워드: calcium-binding

검색결과 346건 처리시간 0.018초

Calcium-binding Peptides Derived from Tryptic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권10호
    • /
    • pp.1459-1464
    • /
    • 2004
  • The purpose of this research was to investigate the potential use of cheese whey protein (CWP), a cheese by-product. The physiological activity of calcium-binding peptides in CWP may be used as a food additive that prevents bone disorders. This research also examined the characteristics of calcium-binding peptides. After the CWP was heat treated, it was hydrolyzed by trypsin. Then calcium-binding peptides were separated and purified by ion-exchange chromatography and reverse phase HPLC, respectively. To examine the characteristics of the purified calcium-binding peptides, amino acid composition and amino acid sequence were analyzed. Calcium-binding peptides with a small molecular weight of about 1.4 to 3.4 kDa were identified in the fraction that was flowed out from 0.25 M NaCl step gradient by ion-exchange chromatography of tryptic hydrolysates. The results of the amino acid analysis revealed that glutamic acid in a calcium-binding site took up most part of the amino acids including a quantity of proline, leucine and lysine. The amino acid sequence of calcium-binding peptides showed Phe-Leu-Asp-Asp-Asp-Leu-Thr-Asp and Ile-Leu-Asp-Lys from $\alpha$-LA and Ile-Pro-Ala-Val-Phe-Lys and Val-Tyr-Val-Glu-Glu-Leu-Lys from ${\beta}$-LG.

Isolation of a Calcium-binding Peptide from Chlorella Protein Hydrolysates

  • Jeon, So-Jeong;Lee, Ji-Hye;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.282-286
    • /
    • 2010
  • To isolate a calcium-binding peptide from chlorella protein hydrolysates, chlorella protein was extracted and hydrolyzed using Flavourzyme, a commercial protease. The degree of hydrolysis and calcium-binding capacity were determined using trinitrobenzenesulfonic acid and orthophenanthroline methods, respectively. The enzymatic hydrolysis of chlorella protein for 6 hr was sufficient for the preparation of chlorella protein hydrolysates. The hydrolysates of chlorella protein were then ultra-filtered under 5 kDa as molecular weight. The membrane-filtered solution was fractionated using ion exchange, reverse phase, normal phase chromatography, and fast protein liquid chromatography to identify a calcium-binding peptide. The purified calcium-binding peptide had a calcium binding activity of 0.166 mM and was determined to be 700.48 Da as molecular weight, and partially identified as a peptide containing Asn-Ser-Gly-Cys based on liquid chromatography/electrospray ionization tandem mass spectrum.

Effect of bay K 8644, A Calcium Channel Agonist, on Dog Cardiac Muscarinic Receptors

  • Lee, Shin-Woong;Park, Young-Joo;Lee, Jeung-Soo
    • Archives of Pharmacal Research
    • /
    • 제14권3호
    • /
    • pp.271-278
    • /
    • 1991
  • To investigate further whether the effects of the dihydropyridine (DHP) drugs on calcium channels are related to those of these drugs on muscarinic receptors, the binding characteristics of the DHP calcium channel agonist, Bay K 8644, on muscarinic receptors and calcium channels were compared to those of the DHP calcium channel antagonists, nicardipine and nimodipine in the dog cardiac sarcolemma. Bay K 8644, nicardipine and nimodipine inhibited the specific $[^3H]$QNB binding with $K_i$ values of 16.7\mu{M}$, 3.5\mu{M}$ and 15.5\mu{M}$ respectively. Saturation data of $[^3H]$QNB binding with $K_i$ VALUES OF 16.7\mu{M}$ 3.5\mu{M}$ and 15.5\mu{M}$ respectively. Saturation data of $[^3H]$QNB binding in the presence of these DHP drugs showed this inhibition to be competitive. Bay K 8644, like nicardipine and nimodipine, blocked the binding of $[^3H]$nitrendipine to the high affinity DHP binding sites, but atropine did not, indicating that the muscarinic receptors and the DHP binding sites m but atropine did not, indicating that the muscarinic receptors and the DHP bindings sites on calcium channels are distinct. The $K_i$ value of Bay K 8644 for the DHP binding sites was 4nM. Nicardipine and nimodipine $(K_i:0.1-0.2\;nM)$ were at least 20 times more potent than Bay K 8644 in inhibiting $[^3H]$ nitrendipine binding. Thus, the muscarinic receptors were about 4000 times less sensitive than thes high afinity DHP binding sites to Bay K 8644. These results suggest that the DHP calcium agonist Bay K 8644 binds directly to the muscarinic receptors but its interaction with the muscarinic receptors is not related to its binding to the DHP binding sites on calcium channels.

  • PDF

Enhancement of Calcium-Binding Quality of Proglycinin Peptides by Chemical Phosphorylation

  • Yang, Jung-Ik;Lee, Shin-Hee;Hahm, Dae-Hyun;Kim, Il-Hwan;Choi, Sang-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.607-611
    • /
    • 2004
  • Glycinin, one of the predominant storage proteins in soybeans, was examined as to whether it could be used as a calcium-binding mediator after chemical phosphorylation and enzymatic hydrolysis. Glycinin is composed of six subunits. One of the proglycinin subunits $(A_{la}B_{lb})$ was overexpressed in E. coli to obtain nonphosphorylated proteins with homogeneity. To investigate the enhanced calcium-binding properties of the phosphopeptides, the proglycinin was purified, phosphorylated, and hydrolyzed with trypsin. The proglycinin expressed in E. coli was purified by ammonium sulfate precipitation, ion-exchange chromatography, and cryoprecipitation. Chemical phosphorylation by sodium trimetaphosphate was performed to obtain phosphorylated proglycinin. After the phosphorylation, one-dimensional isoelectric focusing gel electroanalysis confirmed the phosphorylation of the proglycinin. The phosphorylated peptides were then hydrolyzed with trypsin, followed by a binding reaction with calcium chloride. The calcium-bound phosphopeptides were finally separated using immobilized metal $(Ca^{2+})$ chromatography. Consequently, a limited tryptic hydrolysate of the isolated phosphopeptides exhibited an enhanced calcium-binding ability, suggesting the potential of glycinin phosphopeptides as a calcium-binding mediator with greater availability.

보리 단백질 가수분해물로부터 칼슘 결합 물질의 분리 (Isolation of Calcium-Binding Peptides from Barley Protein Hydrolysates)

  • 이지혜;최동원;송경빈
    • 한국식품저장유통학회지
    • /
    • 제19권3호
    • /
    • pp.438-442
    • /
    • 2012
  • 칼슘보충제로 칼슘 결합 펩타이드를 만들기 위해, 보리 단백질에 Flavourzyme을 사용하여 18시간 동안 가수분해 하였고, 가수분해 된 보리 단백질은 3 kDa 이하로 한외여과 하였다. 한외여과 된펩타이드는 ion exchange chromatography와 normal-phase HPLC를 사용하여 칼슘 결합 펩타이드를 분리하였고, 분리된 각 분획의 칼슘결합력을 측정하였다. 그 결과 가장 높은 칼슘 결합력을 보인 분획을 칼슘 chelation을 위한 소재로 얻었고, 따라서 본 연구 결과 얻어진 보리 단백질 가수분해물은 칼슘보충제로의 사용이 가능하다고 판단된다.

청미래덩굴 뿌리 열수 추출물로부터 칼슘 결합 물질의 분리 (Isolation of a Calcium-Binding Fraction from a Hot-Water Extract of Smilax rhizoma)

  • 이지혜;전소정;송경빈
    • 한국식품저장유통학회지
    • /
    • 제17권6호
    • /
    • pp.903-907
    • /
    • 2010
  • 청미래덩굴 뿌리(Smilacis rhizoma)로부터 칼슘과 결합하는 물질을 분리하고자 열수로 추출한 추출물을 ion exchange, normal-phase HPLC 및 gel filtration chromatogarphy를 이용하여 칼슘 결합 물질을 순차적으로 분리하였다. 그 결과 ion exchange chromatography에서 7개의 major peaks를 얻었으며, 이 중 F6 fraction이 0.083 mM로 칼슘과 가장 높은 결합력을 가졌다. 또한 F6를 $NH_2$ column으로 분획한 결과 F61에서 0.130 mM의 가장 높은 칼슘함량을 나타내었으며, 최종적으로 $Superdex^{TM}$를 이용하여 F611 fraction으로 분리하였다. 따라서 청미래덩굴 뿌리 추출물 중 F611 fraction을 이용하여 biomineral을 제조함으로써 칼슘 보충제나 기능성 성분의 원료로써 식품산업에 활용될 수 있다고 판단된다.

실크 세리신 단백질 가수분해물을 이용한 유기 칼슘제의 제조 및 칼슘 결핍 쥐에서의 생체 이용률 (Manufacturing of Calcium Binding Peptide using Sericin Hydrolysate and Its Bioavailability in Calcium Deficient Rat)

  • 조혜진;이현순;정은영;서형주
    • 동아시아식생활학회지
    • /
    • 제20권5호
    • /
    • pp.680-686
    • /
    • 2010
  • Silk sericin protein was hydrolyzed by seven proteolytic enzymes in order to examine the effectiveness of the hydrolysates in binding calcium. The amino acid nitrogen content of hydrolysates from Flavourzyme was higher than that for other enzymes, and its calcium binding capacity showed a dose-dependent increase. We examined the effects of calcium binding peptide from sericin hydolysates on the bioavailability of Ca-deficient rats. Three-week-old male rats were fed an Ca-deficient diet for three weeks. Rats were divided into four groups (DD: non-treated group on calcium deficient diet; DD+MC: milk-calcium treated group; DD+OC: organic calcium made using sericin hydolysates; and DD+IC: inorganic calcium ($CaCl_2$). After oral administration of calcium supplements for one week, the calcium content of the serum and liver were significantly higher in DD+OC ($101.7{\mu}g$/mL and $49.3{\mu}g$/mL) and DD+MC ($83.6{\mu}g$/mL and $42.8{\mu}g$/mL) than DD ($86.3{\mu}g$/mL and $43.4{\mu}g$/mL). The alkaline phosphatase (ALP) content in the treated groups was significantly lower than DD, but no significant difference among groups was shown. Aspartate aminotransferase (AST) levels did not show any significant difference between groups. Alanine aminotransferase (ALT) levels were significantly reduced compared to the DD group. In conclusion, binding calcium to peptides from sericin hydrolysates seems to improve its bioavailability, and to hasten the cure of calcium deficiency in experimental rats.

미강 단백질 가수분해물로부터 Ca, Fe 결합된 peptide 제조 (Preparation for Calcium and Iron-binding Peptides from Rice Bran Protein Hydrolysates)

  • 전소정;이지혜;송경빈
    • Journal of Applied Biological Chemistry
    • /
    • 제53권3호
    • /
    • pp.174-178
    • /
    • 2010
  • 탈지 미강으로부터 미강단백질을 추출하고 상업용 단백분해 효소로 가수분해하고 한외여과하여 얻어진 미강단백질 가수분해물을 Sephadex G-15로 분리하여 얻어진 peptide fraction에 칼슘, 철분을 binding하여 칼슘, 철분 함유 peptide를 제조하였다. 추출된 탈지 미강 단백질의 분자량은 10~66 kDa에 분포하고 있었다. 추출된 단백질을 Flavourzyme으로 가수분해 시, 최적 가수분해 시간은 6시간이었으며, 5kDa 이하로 한외여과 하여 얻어진 peptide를 Sephadex G-15로 분획한 결과 4개의 major peak를 얻었는데, 각 fraction의 칼슘, 철분을 binding한 결과 Ca/peptide는 FI에서, Fe/peptide는 F2에서 가장 많은 함량을 나타내었다. 본 연구 결과 얻어진 칼슘, 철분 binding peptide는 biomineral 기능성 식품의 소재로써 식품산업에 활용될 수 있다고 판단된다.

돼지 육골분 및 진주담치 단백질의 가수분해물 제조 및 칼슘 결합 물질의 분리 (Isolation of calcium-binding peptides from porcine meat and bone meal and mussel protein hydrolysates)

  • 정승훈;송경빈
    • 한국식품저장유통학회지
    • /
    • 제22권2호
    • /
    • pp.297-302
    • /
    • 2015
  • 저활용 단백질로부터 칼슘 결합물질을 분리하기 위해 돼지 육골분과 진주담치 단백질을 단백질 분해 효소인 alcalase를 이용하여 가수분해물을 제조하였고, 체내 흡수가 용이한 3 kDa 이하로 한외여과 하였다. 돼지 육골분 가수분해물은 Mono Q 컬럼을 통해 분리하였고, 진주담치 가수분해물의 경우 Q-Sepharose로 분리 하여 각각 2개, 3개의 peptide fraction을 얻어 각 fraction의 칼슘 결합력을 측정하였다. 그 결과 MBM F2와 Mussel F3에서 가장 높은 칼슘 결합력을 나타내었고, 따라서 본 연구 결과로 얻어진 가수분해물들은 칼슘 보충 소재로 활용될 수 있다고 판단된다.

Separation of Calcium-binding Protein Derived from Enzymatic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Shin, H.S.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권5호
    • /
    • pp.712-718
    • /
    • 2004
  • This study was carried out to separate the calcium-binding protein derived from enzymatic hydrolysates of cheese whey protein. CWPs (cheese whey protein) heated for 10 min at $100^{\circ}C$ were hydrolyzed by trypsin, papain W-40, protease S, neutrase 1.5 and pepsin, and then properties of hydrolysates, separation of calcium-binding protein and analysis of calcium-binding ability were investigated. The DH (degree of hydrolysis) and NPN (non protein nitrogen) of heated-CWP hydrolysates by commercial enzymes were higher in trypsin than those of other commercial enzymes. In the result of SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis), $\beta$-LG and $\alpha$-LA in trypsin hydrolysates were almost eliminated and the molecular weight of peptides derived from trypsin hydrolysates were smaller than 7 kDa. In the RP-HPLC (reverse phase HPLC) analysis, $\alpha$-LA was mostly eliminated, but $\beta$-LG was not affected by heat treatment and the RP-HPLC patterns of trypsin hydrolysates were similar to those of SDS-PAGE. In ion exchange chromatography, trypsin hydrolysates were shown to peak from 0.25 M NaCl and 0.5 M NaCl, and calcium-binding ability is associated with the large peak, which was eluted at a 0.25 M NaCl gradient concentration. Based on the results of this experiment, heated-CWP hydrolysates by trypsin were shown to have calcium-binding ability.