• 제목/요약/키워드: calcium solution

검색결과 920건 처리시간 0.036초

수산화칼슘의 L929 세포독성 및 연쇄구균에 대한 항균효과에 관한 연구 (THE CYTOTOXICITY ON L929 CELLS AND ANTIMICROBIAL EFFECT ON SEVERAL STREPTOCOCCI OF CALCIUM HYDROXIDE)

  • 유영대;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.538-548
    • /
    • 1995
  • Calcium hydroxide has been used not only as pulp capping and pulpotomy agents in the operative dentistry, but dressing and temporary filling materials in root canal treatment. Calcium hydroxide was known to stimulate odontoblast to produce new reparative dentin and to eliminate microorganims effectively in the infected root canals. The purpose of this study was to evaluate the effect of calcium hydroxide solution on cultured L929 cells and its antibacterial effect on several streptococci. Calcium hydroxide solution (0.121g/100ml) was added to L929 cells and cell viability was measured using 3-(4,5-dimethylthiazol-2-yl) -2,5-dimethyltetrazolium bromide (MTT) and neutral red (NR) dye. Calcium hydroxide solution (20, 40, 60, 80, 100 and $150{\mu}l$) was added to L929 cells in 96-well microplates for 1, 4 and 24 hours respectively. Cell viability was gradually decreased when the volume and exposure time of calcium hydroxide solution were increased. When $150{\mu}l$ of calcium hydroxide was applied to L929 cells for 24 hours, there was more than fifty percent reduction of cell viability. Calcium hydroxide solution (20g/100ml) showed antibacterial effect against S. uberis, S. intermedius and S. mitis after thirty-second exposure. But 0.121g/100ml concentration of cacium hydroxide solution exhibited no antibacterial effect on six streptococci after one-hour exposure.

  • PDF

칼슘수용액으로 처리한 상아질과 합착용 글래스아이오노머의 전단결합강도에 관한 연구 (A STUDY ON THE SHEAR BOND STRENGTH OF LUTING GLASS IONOMER AND DENTIN TREATED WITH CALCIUM SOLUTION)

  • 백영걸;이성복;박남수
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.593-610
    • /
    • 1996
  • The objective of this paper was to evaluate the shear bond strength of luting glass ionomer cement with defferent calcium based solution treatment on dentin surface. 120 extracted human teeth were classified into 12 group based on presence of smear layer on dentin surface and type of treatment solution. Smear layer remove on dentin surface was done using 6% citric acid for 60 seconds. Five different dentin surface treatment solutions(calcium acetate, calcium carbonate, clacium chlorided, calcium hydroxide, and calcium phosphate) were evaluated in this study. After surface modification, metal ring(inner diameter : 3mm, depth : 1mm) was placed to expose the same dentin surface area and inner space was filled with luting glass ionomer cement according to the recommended procedure for stadard clinical procedure. The shear bond strength of glass ionomer cement was determined after 24 hours. SEM was used for the evaluation of the surface morphologic changes and EDAX analysis was done for determination of the change of the calcium contents of treated dentin. Follwing conclusion can be drawn : 1. In the group of the dentin surface with smear layer, the calcium carbonate solution was the most effective for the increase of the clacium content and the shear bond strength of glass ionomer cement to dentin surfaces. 2. In the group of the calcium carbonate treated dentin with msear layer, the shear bond strength was increased twice compared to the control group and cohesive failure mode was observed. 3. The shear bond strength of cement was increased significantly be the removal of smear layer using 6% citric aicd. However, additional calcium solution treatments were not effective for further bond strength increase. 4. The shear bond strength of cement was significantly improved by both of the removal of smear layer and the calcium solution treatment, and the former was more effective for bond strength improvement. 5. The smear layer removed/calcium solution treated groups showed dentinal tubule obstruction and crystal attachment in SEM evaluation. However, the shear bond strengths of these groups were not increased compared to the smear layer removed/no dentin treatment group.

  • PDF

Chitosan Stimulates Calcium Uptake and Enhances the Capability of Chinese Cabbage Plant to Resist Soft Rot Disease Caused by Pectobacterium carotovorum ssp. carotovorum

  • Jang, Eun-Jung;Gu, Eun-Hye;Hwang, Byoung-Ho;Lee, Chan;Kim, Jong-Kee
    • 원예과학기술지
    • /
    • 제30권2호
    • /
    • pp.137-143
    • /
    • 2012
  • Chinese cabbage plant was grown hydroponically for 4 weeks in order to examine the temporal relationship of calcium concentration of the nutrient solution with calcium content in the leaf tissue and susceptibility of the tissue to soft rot disease by $Pectobacterium$ $carotovorum$ ssp. $carotovorum$ (Pcc). Calcium concentration from 0.5 to 32.0 mM was maintained for 1 week using Hoagland & Arnon solution. The calcium content of the leaf was proportionally increased to the concentration of the nutrient in the solution (r = 0.912). In contrast, the severity of soft rot symptom in the young leaves was inversely related with the amount of calcium supplied to the nutrient solution (r = 0.899). Water-soluble chitosan, prepared by hollow fiber filtration (> 100 kDa) was applied into the nutrient solution from 0.0 to 5,000 ppm. The chitosan of 10 ppm was the most effective to promote calcium uptake of the leaf, showing 155% of the control. The same chitosan solution prohibited most soft rot development of the leaf by Pcc, exhibiting only 53% of the control. Among different molecular weight fractions, chitosan fraction obtained from 30-100 kDa molecular weight cut-off promoted calcium uptake the most up to 163% of the control, and reduced the development of soft rot disease recording merely 36% of the control of the leaf tissue. The results obtained in the present study suggest that large scale production of water-soluble chitosan with an optimum molecular weight and its commercial application to Chinese cabbage production will be important to improve yield and quality of the crop.

수산화아파타이트 합성시 pH의 영향 (Effect of pH on the Synthesis of Hydroxyapatite)

  • 김수룡;이병민;박용갑
    • 한국세라믹학회지
    • /
    • 제28권11호
    • /
    • pp.885-891
    • /
    • 1991
  • Calcium hydroxyapatite have been synthesized by a direct precipitation reaction between 0.05 M calcium hydroxide suspension and 0.3 M orthophosphoric acid solution. 0.01 M calcium hydroxide solution was added during the reaction in order to increase the total Ca/P mol ration and reaction pH of the solution. The stoichiometric hydroxyapatite was synthesized over 1.75 as total Ca/P mol ratio, but the calcium-deficient hydroxyapatite was prepared under 1.725 as total Ca/P mol ratio. The nonstoichiometry of the precipitates were interpreted in terms of the pH change during the reaction.

  • PDF

Biocementation via soybean-urease induced carbonate precipitation using carbide slag powder derived soluble calcium

  • Qi, Yongshuai;Gao, Yufeng;Meng, Hao;He, Jia;Liu, Yang
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.79-90
    • /
    • 2022
  • Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.

가압수열 수용액중에서 인산석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향 (Effects of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrated from by-Product Gypsum of Phosphoric Acid Process at Hydrothermal Condition)

  • 이구종;최상흘
    • 한국세라믹학회지
    • /
    • 제24권4호
    • /
    • pp.343-348
    • /
    • 1987
  • The effects of salts such as aluminum sulfate as inorganic salt(2-4%), and sodium salts of citrate, tartrate, succinate, potassium tartrate and gelatin as organic salts(0.1%) on the formation of ${\alpha}$-calcium sulfate hemihydrate from by-product gypsum of phosphoric acid process under hydrothermal condition at 123$^{\circ}C$ and 133$^{\circ}C$ were investigated. Aluminum sulfate solution exhibited the catalystic effected on the crystallization of ${\alpha}$-calcium sulfate hemihydrate of which was assumed in the prismatic form, and organic salts solution exhibited little effect on the catalystic action to the crystallization, than inorganic salts. In the acidic solution with sulfuric acid(pH=2), needle like crystal of calcium sulfate hemihydrate was obtained. Hydrothermal process with aluminum sulfate solution also showed certain amounts of impurity removal such as phosphorus penataoxide from calcium sulfate hemihydrate.

  • PDF

Gypsum-Wood의 제조와 성질 (Manufacture and Properties of Gypsum-Wood)

  • 이종신;김성준
    • 한국가구학회지
    • /
    • 제19권1호
    • /
    • pp.83-90
    • /
    • 2008
  • Gypsum-wood composites were made by introducing inorganic substances into wood using calcium chloride, first treating solution, and sodium sulfate, secondary treating solution, by double diffusion process under atmospheric pressure at room temperature. The process conducted as follows: water saturated specimens were soaked in calcium chloride solutions at several concentration. Then the specimens were soaked further in saturated sodium sulfate solution, and they were leached in flowing tap water for 24h. To attain sufficient weight percent gain (WPG) values, the suitable concentration of calcium chloride and soaking time in saturated sodium sulfate solution were 20% and 48h, respectively. Inorganic substances were produced mainly in the lumina of tracheides. It was made sure that these substances were dihydrate gypsum($CaSO_4$ $2H_2O$) by X -ray microanalysis (SEM-EDX). The composites had good fire resistance due to low heat transfer rate of gypsum formed in wood. However, the composites had little decay resistances, because they showed high weight losses by test fungi attacks.

  • PDF

Hardening Properties of Activated Calcium Dialuminate Clinker with Phosphoric Acid Solution

  • Song, Tae-Woong;Kim, Sei-Gi
    • The Korean Journal of Ceramics
    • /
    • 제3권4호
    • /
    • pp.235-238
    • /
    • 1997
  • Basic properties of new cement pastes based on the system $CaO-Al_2O_3-P_O_5-H_2O$were studied Phosphoric acid solutions and calcium dialuminate clinkers synthesized by the hydration-burning method were used for liquid and powder components of the paste, respectively Variation in the compositions of the paste was achieved by changing the liquid/powder ratio and the concentration of phosphoric acid solution. The hardening rate of the paste was so largely affected by the amount of phosphoric acid that hardening was inhibited with the low-concentrated solution but was explosively accelerated with the high-concentrated solution. The phosphoric acid solutions of concentration of 45~50% and the liquid/powder ratio of 0.5~1.5 were favoured for the high early-strength cement paste with the reasonable hardening rate and high strength. The binding phase of hardened paste was the dense amorphous gel of the system $CaO-Al_2O_3-P_O_5-H_2O$. in which the unreacted calcium dialuminate grains were embeded.

  • PDF

Evaluation of Water Softening with the Removal of Calcium Ion by Ion Flotation Approach

  • Mafi, Azadeh;Khayati, Gholam
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.219-224
    • /
    • 2021
  • Ion flotation is an efficient method to remove metal ions from aqueous solution. In this work, ion flotation was applied to calcium removal from aqueous solution. The parameters used included sodium stearate (SS) and sodium dodecyl sulfate (SDS) as collectors, 1-butanol and 1-propanol as frothers, pH, and air-flow rate. An L16 orthogonal array was chosen according to the mentioned factors and levels, and experimental tests were conducted according to the Taguchi orthogonal array. The results showed that all of the factors except one had significant effect on the flotation performance. The percentage contribution of parameters showed that type of frother and type of collector made the greatest (43.14%) and the lowest (9.86%) contribution, respectively. In optimal conditions, the recovery of Ca (II) ion was 45.67%. Also, the results illustrated that the Taguchi method could predict calcium removal from aqueous solution by ion flotation with 2.63%. This study showed that the use of ion flotation was an effective method for Ca (II) ion removal from aqueous solution.

고품위 형석의 신속 용량법 (Rapid Volumetric Assay of Fluorspar Concentrate)

  • 최규원;오준석;이광우
    • 대한화학회지
    • /
    • 제8권3호
    • /
    • pp.109-112
    • /
    • 1964
  • A volumetric method of the determination of calcium carbonate and calcium fluoride in fluorspar concentrate is described. The carbonate is converted into solution by treatment of the sample in HNO$_3$-acetone (l% by volume) mixture, and the fluoride by treating the residue with H$_3BO_3$-HCl mixture. The calcium in the solution is determined volumetrically using EDTA standard solution. The selective dissolution of calcium carbonate by HNO$_3$-acetone mixture is superior to Bidtel's acetic method and little correction for the dissolution of calcium fluoride is needed. Triethanolamine is found to be superior to KCN in masking heavy metal ions.

  • PDF