• Title/Summary/Keyword: calcium silicate hydrate

Search Result 79, Processing Time 0.024 seconds

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

The Effects of Silica Sol and Modified Latex on the Concrete Surface Protection Cement Mortar for Improvement of Durability of Concrete (콘크리트 내구성 향상을 위한 표면 보호용 시멘트 모르타르에서 실리카 및 개질 라텍스의 영향)

  • Kim, Yong-Hoon;Jeaong, Cheol-Soo;Song, Myong-Shin;Lee, Woong-Geol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.715-722
    • /
    • 2019
  • The durability of concrete structures deteriorates due to the corrosion of rebars and concrete deterioration by harmful ions (CO32-, Cl-, SO42-) penetrating and diffusing from the outside into concrete. Therefore, the use of surface-protection finishing mortar is very important for preventing or delaying the deterioration of concrete. In this study, the possibility of the prevention of deterioration or delay of deterioration of concrete was investigated using natural latex modified with silica sol and calcium ions for cement mortar, which can be used to repair the mortar of deteriorated concrete or for finishing the mortar of concrete. As a result, fine calcium silicate hydrate was formed in the pores of the cement material due to the calcium ions and silica sol components contained in the modified latex component that reduce the pore distribution of the cement mortar, thereby reducing the penetration and diffusion of harmful ions (CO32-, Cl-, and SO42-). Furthermore, the latex component was found to be present in the pores of the cement to improve the alkali resistance and carbonation resistance.

Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag (전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성)

  • Hyeongjoo Kim;Taegew Ham;Taewoong Park;Taeeon Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2024
  • This study aimed to investigate the changes in chemical components that occur when weak clay is mixed with steel slag modified with calcium oxide, and to understand the expression characteristics of compressive strength according to hydrophilicity and curing time. XRF testing, SEM imaging, vane shear strength and uniaxial compressive strength testing were conducted. Calcium (Ca) released from the steel slag increases the Ca content in clay by increasing the number of crystal particles and forming a coating layer known as calcium silicate hydrate (CaO-SiO2-H2O) through chemical reactions with SiO2 and Al2O3 components. The weak clay stabilized with steel slag is classified into an initial inactive zone where strength relatively does not increase and an activation zone where strength increases over curing time. The vane shear strength of the initial inactive area was found to be 4.4 to 18.4 kN/m2 in the state of the weight mixing ratio Rss 30% (steel slag 30% + clay 70%). In the case of the active area, the maximum uniaxial compressive strength increased to 431.8 kN/m2 after 480 hours of curing time, which increased due to the apparent adhesion strength of clay through pozzolanic reaction. Therefore, considering the strength expression characteristics of stabilized mixed clay based on the mixing ratio (Rss) during the recycling of steel slag can enhance its practicality in civil engineering sites.

High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin (Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Do, Jeong-Yun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

Characterizations and Quantitative Estimation of Alkali-Activated Binder Paste from Microstructures

  • Kar, Arkamitra;Ray, Indrajit;Halabe, Udaya B.;Unnikrishnan, Avinash;Dawson-Andoh, Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.213-228
    • /
    • 2014
  • Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N-A-S-H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N-A-S-H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N-A-S-H and CSH(S) were in close agreement with each other. The $R^2$ values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders.

Strength Characteristics of Geo-polymer Grout (지오폴리머계 그라우트재의 강도 특성)

  • Lee, Jonghwi;Kim, Seonju;Cha, Kyungsub;Kim, Sunkon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.53-59
    • /
    • 2012
  • In this study, strength and durability of a geo-polymer grout material(HIT) was investigated through unconfined compression strength tests(UCS)), scanning electron microscope(SEM), elution tests, and surface observations. UCS tests showed high initial strength and rapid continuous strength increments when compared to labile wasser glass(LW) and space grouting rocket system (SGR) grout materials, which showed strength reduction after 28 days. The higher strength was also reflected in SEM results which showed calcium silicate hydroxide(C-S-H) gels of the dense hydrate range, indicating higher strength and durability. Additionally, elution tests and grout surface observations showed HIT was in good condition and the decrease in weight was minor when under water for six months. LW and SGR showed the grout surface to be constricted and lower durability due to higher weight increase. These results and observations show HIT to be better suited for coastal structural applications than LW and SGR in long terms of strength and durability.

Effect of Steam Curing on Compressive Strength of Slag Binder Concrete (증기양생이 고로슬래그 콘크리트의 압축강도에 미치는 영향)

  • Lim, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.338-343
    • /
    • 2017
  • In this study, blast furnace slag powder was used in concrete to help reduce carbon dioxide emissions and to recycle industrial waste. Blast furnace slag powder is a byproduct of smelting pig iron and is obtained by rapidly cooling molten high-temperature blast furnace slag. The powder has been used as an admixture for cement and concrete because of its high reactivity. Using fine blast furnace slag powders in concrete can reduce hydration heat, suppress temperature increases, improve long-term strength, improve durability by increasing watertightness, and inhibit corrosion of reinforcing bars by limiting chloride ion penetration. However, it has not been used much due to its low compressive strength at an early age. Therefore, this study evaluates the effects of steam curing for increasing the initial strength development of concrete made using slag powder. The relationship between compressive strength, SEM observations, and XRD measurements was also investigated. The concrete made with 30% powder showed the best performance. The steam curing seems to affect the compressive strength by destroying the coating on the powder and by producing hydrates such as ettringite and Calcium-Silicate-Hydrate gel.

Strength Development and Carbonation Characteristics of Slag Cement/Class C Fly Ash blended CO2 Injection Well Sealant

  • Kim, Tae Yoo;Hwang, Kyung-Yup;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • CO2 injection well sealant is vulnerable to supercritical CO2 (scCO2) exposure. To develop an alternative to the conventional sealant system (class G cement/class F fly ash), the performance of slag cement (SPC) systems containing class F fly ash (FFA) or class C fly ash (CFA) was evaluated and compared with the conventional sealant under scCO2 conditions. All sealant systems showed an immediate increase in compressive strength upon scCO2 exposure and, at 37.6 MPa, SPC/CFA showed the highest compressive strength after 14 days, which was much higher than the 29.8 MPa of the conventional sealant system. Substantial decreases in porosity were observed in all sealant systems, which were partly responsible for the increase in strength. Carbonation reactions led to pH decreases in the tested sealants from 12.5 to 10~11.6. In particular, the greatest decrease in pH in slag cement/class C fly ash probably supported relatively sustainable alkali activation reactions and the integrity of cement hydrates in this system. XRD revealed the presence of CaCO3 and a decrease in the content of cement hydrates in the tested sealants upon scCO2 exposure. TGA demonstrated a greater increase of CaCO3 and calcium-silicate-hydrate phases in SPC/CFA than in the conventional sealant upon scCO2 exposure.

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.