• Title/Summary/Keyword: calcium nitrate tetrahydrate

Search Result 3, Processing Time 0.018 seconds

Recovery of High Purity Calcium Nitrate from Blast Furnace Slag (고로수재슬래그로부터 고순도 질산칼슘 회수에 관한 연구)

  • Yoo Jeong Kun;Lee Man Seung;Kim Kyung Soo;Choi Seung Hoon
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • Concepts and experimental results for the unique utilization process which we could obtain the high purity calcium nitrate from blast furnace slag in the steel industry are described. Firstly we reacted the blast slag with nitric acid and separatively removed the insoluble silica by filtration. We adjust the pH of filtrate to 6∼8 with calcined lime, and then precipiated out the metal components like Fe, Al, Mg in the forms of hydroxides. Consequently concentration of the mother liquor and crystallization processes make us obtain the high purity (>98 wt%) calcium nitrate tetrahydrates, which is expected the valuable fertilizers.

Effect of nitrogen types and the electrical conductivity of a nutrient solution on gray mold caused Botrytis cinerea on strawberry plants

  • Nam, Myeong hyeon;Lee, Hee chul;Kim, Tae il
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.103-111
    • /
    • 2019
  • Gray mold caused by Botrytis cinerea on strawberry plants is an economically significant disease in Korea. The rates for diseased fruits are high during the strawberry harvesting period from December to February, especially in hydroponic cultivation. This study assessed the effect of the nitrogen type in the soil culture and the electrical conductivity (EC) of the nutrient solution in a hydroponic culture on the gray mold incidence in 'Seolhyang' strawberry plants. The nitrogen sources assayed included calcium nitrate tetrahydrate (CN4), calcium nitrate decahydrate (CN10), ammonium sulfate (AS), and commercial fertilizer 213 (213). The effect of the EC was tested at 0.5, 0.8, 1.0, and $1.5dS{\cdot}m^{-1}$. The occurrence of gray mold varied according to the nitrogen type. The disease incidence and nitrogen content for the main nitrogen type were higher compared to the non-treated control. The AS treatment showed the highest occurrence of tipburn and gray mold. The incidence of gray mold as well as the nitrogen and phosphorus content of the leaves increased as the EC level was increased. These results indicate that the incidence of gray mold in strawberry plants is related to the nitrogen content of the leaf and the EC of the nutrient solution.

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.