• Title/Summary/Keyword: calcium carbonate-forming bacteria

Search Result 9, Processing Time 0.022 seconds

Applications and Prospects of Calcium Carbonate Forming Bacteria in Construction Materials (건축공학분야에서 탄산칼슘형성세균의 응용과 전망)

  • Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • Microbiological calcium carbonate precipitation (MCCP) is being applied for the aesthetic restoration of cement buildings destroyed by biochemical processes and to block water penetration into the cement's inner structure. After determining the advantages of this technique, many related studies in the area of architecture concerning the application of microorganisms to improve construction material have been reported in both America and Europe. The techniques compatibility with cement material is especially interesting because of the needed screening of various calcium carbonate forming-bacteria and the required development of their application methods. The purpose of this review is to describe the mechanism of MCCP and related researches with eco-friendly construction materials. Mainly, we describe the methodological studies focused on biodeposition on the surface of building materials and the research trends concerning the addition of microorganisms to improve the durability of cement structures. Additionally, the concepts and technical aspects focused on the development of self-healing smart concrete, with the use of multi-functional bacteria, have been considered.

Application of Bacteria Isolated from Dok-do for Improving Compressive Strength and Crack Remediation of Cement-sand Mortar (독도산 탄산칼슘형성세균에 의한 모르타르 균열보수와 압축강도 증진)

  • Park, Sung-Jin;Lee, Na-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.216-221
    • /
    • 2010
  • This study shows an application of microbiologically induced carbonate precipitate for strength improvement and crack remediation of cement-sand mortar. Seven calcium carbonate-forming bacteria (CFB) were isolated from Dok-do and partially identified by DNA sequence analysis of the 16s rRNA gene. Crystal aggregates were apparent around the bacterial colonies grown on an agar medium. These strains showed strain specific $CaCO_3$ precipitation on urea-$CaCl_2$ medium. Among 7 isolates, Arthrobacter nicotinovorans KNUC601, Microbacterium resistens KNUC602, Agrobacterium tumefaciens KNUC603, Exiguobacterium acetylicum KNUC604, and Bacillus thuringiensis KNUC606 showed a repairing of artificial forced cracks in cement-sand mortar. Compressive strength of cement-sand mortar consolidated with Stenotrophomonas maltophilia KNUC605 was increased around 14.07% compared with that of negative control.

Isolation of Microorganisms for Optimization of Autonomous Crack Healing and Verification of Crack Healing (자발적 균열치유작용 최적화를 위한 미생물군 분리 및 균열치유작용 검증)

  • Byung-Jae Lee;Yeon-Jun Yu;Hyo-Sub Lee;Joo-Kyoung Yang;Yun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.103-108
    • /
    • 2023
  • In this study, basic research was conducted to secure microbial resources applicable to autonomous crack healing concrete. To this end, in this experiment, biomineral-forming microorganisms were separated from natural sources, and the ability of survival in cement and calcium carbonate precipitation were compared to secure suitable microbial resources. Bacillus-type bacteria forming endospores were isolated from the sample, and the amount of calcium carbonate produced by the six microorganisms identified by 16S rRNA sequencing was compared. Two types of microorganisms, Bacillus velezensis and Bacillus subtilis, with the highest calcium carbonate precipitation were selected, and the survival of the microorganisms was confirmed through phase contrast microscopy after being cured after being added to the mortar. In addition, it was confirmed that the autonomous crack healing capability by the crack healing material produced by microorganisms was confirmed by artificially generating cracks in the mortar.

Isolation of Fungal Deteriogens Inducing Aesthetical Problems and Antifungal Calcite Forming Bacteria from the Tunnel and Their Characteristics (터널에서 미학적 문제를 야기하는 진균 및 항진균 활성을 가진 탄산칼슘 형성세균의 분리와 특성)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.287-293
    • /
    • 2011
  • The purpose of this study was to isolate and characterize fungal deteriogens, which induce discoloration of the cement tunnel, and calcite forming bacteria (CFBs), which have antifungal activity against fungal deteriogens. Isolation of mold, bacteria and yeast was performed using several solid media and partially identified using internal transcribed spacer (ITS); 5.8S rRNA gene sequencing and 16s rDNA sequencing. A total of 19 microbial strains were identified with the most widely distributed fungal strain being Cladospirum sphaerospermum. In addition, five bacteria derived from the tunnel were identified as CFBs. Amongst the latter, Bacillus aryabhatti KNUC205 exhibited antifungal activity against Cladospirum sphaerospermum KNUC253 and Aspergillus niger KCTC6906 as concentrated filtered supernatants.

Calcite-Forming Bacteria for Compressive Strength Improvement in Mortar

  • Park, Sung-Jin;Park, Yu-Mi;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.782-788
    • /
    • 2010
  • Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and X-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the $CaCO_3$ crystals. We used the isolates to improve the compressive strength of cement-sand mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Islands, Dokdo and Their Application on Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1269-1278
    • /
    • 2013
  • Crack remediation on the surface of cement mortar using microbiological calcium carbonate ($CaCO_3$) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-$CaCl_2$ media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed $CaCO_3$ precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

Characterization of CO2 Biomineralization Microorganisms and Its Mineralization Capability in Solidified Sludge Cover Soil in Landfill (매립지 복토용 슬러지 고화물내 이산화탄소 생광물화 고정균 분석 및 생광물화능 평가)

  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Chun, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.598-606
    • /
    • 2013
  • This study was performed to determine whether biomineralization microbes were actively present underneath landfill cover soil producing biocalcification. From this, various types of microbes were observed. Among them, two species were dominantly found; Bacillus megaterium and Alkaliphilus metalliredigens that were known as biominerlization bacteria. With those microbes, $CO_2$ was more highly consumed than without bacteria. In response, the calcium carbonate mineral was produced at 30% (wt) greater than that of the control. At the same time, TG-DTA was successfully used for quantification of $CO_2$ consumed forming calcium carbonate minerals resulting from biocalcification. It was decided that the presence of solidified sewage sludge cake utilized as a cover soil in the landfill could efficiently contribute to possible media adaptably and naturally sequestering $CO_2$ producing from the landfill.

Application of Antifungal CFB to Increase the Durability of Cement Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1015-1020
    • /
    • 2012
  • Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calcite-forming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed $CaCO_3$ precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at $18^{\circ}C$ for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the $CaCO_3$ precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

Investigation of Microorganism-Based Autonomous Crack Healing Agent and Full-scale Verification of Crack Healing (미생물 기반 자발적 콘크리트 균열치유제 성능 분석 및 실스케일 균열치유성능 검증)

  • Yeon-Jun Yoo;Byung-Jae Lee;Joo-Kyoung Yang;Yun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.138-143
    • /
    • 2023
  • In this study, the crack healing performance of each crack healing agent manufacturing method was analyzed by adding crack healing agents in the form of alginate gel and spore suspension inoculated with endospores of calcium carbonate-forming bacteria to mortar. In addition, by applying it to an full-scale structure in the form of a box-type culvert, we attempted to create an environment in which the developed crack healing agent can be applied not only to a laboratory environment but also to an actual field. The crack healing agent using the dry heat drying method showed crack healing performance, but in the case of the freeze drying method, many spores were killed by freeze hardening and therefore the crack healing performance was lost. As a result of SEM and XRD pattern analysis of the presumed crack healing material extracted from the crack of a full-scale structure, it was found to be calcite, one of the calcium carbonate crystals produced by microorganisms applied to the crack healing agent. In conclusion, it was found that the crack healing by microorganisms can be implemented in a real structure.