• Title/Summary/Keyword: calc-alkaline series

Search Result 60, Processing Time 0.025 seconds

Petrological Study on the Intermediate-basic Plutonic Rocks in the Southwestern Part of the Korean Peninsula (한반도 서남부에 분포하는 중성-염기성 심성암류에 대한 암석학적 연구)

  • Kim, Yong-Jun;Park, Jae-Bong;Park, Byung-Kyu
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.528-538
    • /
    • 2006
  • Main aspect of this study is to clarify the petrochemistry and petrogenesis of intermediated-basic plutons located in the southwestern part of the Korean peninsula. These Intermediated-basic plutons consist of Pre-Cambrian anorthosite-gabbro, Triassic hornblende gabbro (Jirisan area), Jurassic diorite-syente (Jirisan and north area) and Cretaceous gabbro-diorite (south area). The Massif type anorthosite has multi intrusions, where each one intruded by gabbroic rocks, composed of gabbro, norite, troctolite and leucogabbro. In the variation diagram of the major-minor composition, AMF and Pl-Px-Ol diagrams, we suggest that intermediated-basic plutons in the southwestern part of the Korea show a trend consistent to Daly's value and calc-alkaline rock series. Accoding to REE (La/Yb)cw and Eu/Sm, these plutons are enriched with LREE than HREE, and emplaced by the tectonic setting in continent and/or continental margin.

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Petrochemical Study of Igneous Rocks Occurring in the Northwestern Part of Keumsan Area, Chungnam-do (충남 금산군 서북부에 분포하는 화성암류에 대한 암석화학적 연구)

  • Kim, Won-Sa;Min, Kyoung-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.2 s.48
    • /
    • pp.99-109
    • /
    • 2006
  • Igneous rocks occurring in the northwesern part of Keumsan area, Chungcheongnam-do were studied petrogeochemically. The geology of this area is composed mainly of the Precambrian biotite gneiss, age-unknown Ogchon supergroup, Jurassic biotite granite, and Cretaceous volcanic rocks, pink feldspar granite and quartz porphyry. The biotite granite is gradually changes to leucocratic nature by going from center to periphery of the rock mass. It shows variation, with distance from the center, in chemical components: $SiO_2,\;Na_2O\;and\;K_2O$ increase, whereas $Fe_2O_3,\;CaO,\;P_2O_5,\;MgO,\;and\;TiO_2$ decrease. Based on geochemical data, the biotite granite and quartz porphyry belong to subalkaline series and I-type. They show calc-alkaline differentiation trend. The biotite granite shows little negative Eu-anomaly pattern, whereas quartz porphyry show marked negative Eu-anomaly pattern, indicating that quartz porphyry was evolved further, when compared with biotite granite.

A Study on the Genesis of Eonyang Amethyst Deposits (언양(彦陽) 자수정 광상(鑛床)의 성인(成因)에 관한 연구(硏究))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.335-343
    • /
    • 1994
  • The Eonyang amethyst deposits are composed of vug quartz emplaced in the Eonyang granites of Mesozoic Cretaceous age. The Eonyang granites are composed of biotite granite, porphyritic biotite granite, aplite and miarolitic granite. The petrochemical data of the Eonyang granites show the trend of subalkaline magma, calc-alkaline magma, I-type granitoid and magnetite series. The vug quartz show the characteristic growth zoning (white quartz-smoky quartz-amethyst) from wall side. Generally fluid inclusions in the vug quartz can be divided into four main types based on compositions (I-type: gas inclusion, II-type: liquid inclusion, III-type: polyphase inclusion, IV-type: liquid $CO_2$-bearing inclusion). Solid phase of polyphase inclusions are halite(NaCl), sylvite(KCl), hematite ($Fe_2O_3$) and unknown anisotropic solid. Homogenization temperatures inferred from the fluid inclusion study ranges from $440^{\circ}C$ to $485^{\circ}C$ in white quartz, from $227^{\circ}C$ to $384^{\circ}C$ in smoky quartz, from $133^{\circ}C$ to $186^{\circ}C$ in amethyst, respectively. Salinities of fluid inclusions in each mineralization stages ranges from 40 wt.% to 58 wt.% in white and smoky quartz, from 1.0 wt.% to 8.7 wt.% in amethyst respectively. A consideration of the pressure regime during vug quartz deposition based on the boiling evidence suggests lithostatic pressure of less than 72 bars. This range of pressure indicate that vug quartz lay at depth of 750 m below the surface at the during mineralization.

  • PDF

Petrological characteristics of the Yeongdeok granite (영덕화강암의 암석학적 특징)

  • Woo, Hyeon-Dong;Jang, Yun-Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.31-43
    • /
    • 2014
  • The Yeongdeok granite emplaced in the eastern Yeongyang subbasin is typically a medium- to coarse-grained massive biotite granite. It intruded into Precambrian schist & gneiss complex and is unconformably overlain by Cretaceous sedimentary rocks. In this study, we attempt to investigate the magma type which formed Yeongdeok granite and estimate the emplacement depth using Al-in-hornblende geobarometer to mineral composition. According to the magma fractionation, $TiO_2$, $Al_2O_3$, $Fe_2O_3{^*}$, FeO, $Fe_2O_3$, MnO, MgO, CaO, $Na_2O$ and $P_2O_5$ show positive trend but $K_2O$ indicate negative trend with $SiO_2$ contents. Those are identified as calc-alkaline series in AFM diagram and show the chemical characteristics of the I-type magma through the oxidation tendency of the iron ion and the portion of the alkaline composition. When calculated using the equation of Hollister et al. (1987), the emplacement depths of the Yeongdeok granite range from 8.98 to 17.19 km and average depth was estimated 13.03 km approximately.

Petrologic and Mineralogic Studies on the Origin of Paleolithic Obsidian Implements from Wolseongdong, Korea (월성동 구석기 유적 출토 흑요석제 석기의 암석 및 광물학적 연구를 통한 원산지 추정)

  • Jang, Yun-Deuk;Park, Tae-Yoon;Lee, Sang-Mok;Kim, Jeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.733-742
    • /
    • 2007
  • Petrological, mineralogical, and geochemical analyses were carried on the paleolithic obsidian implements excavated at Wolseongdong, Daegu, Korea. The obsidians has a homogeneous glassy texture that can be observed in a typical obsidian formed from a rapid cooling of silicic magma. Major element composition of the obsidians represent calc-alkaline series. Comparing those with other obsidians from domestic local excavation sites, Mt. Baekdu, and Kyusu of Japan, the Wolseongdong obsidians show similar element distribution pattern with others in spite of small difference in trace and rare Earth element contents. Sr isotopes of the obsidians considerably differ from those of the obsidians from southern part of the Korean Peninsula or from Mt. Baekdu. K-Ar age is approximately 30 Ma, which is much older than Mt. Baekdu (10 Ma). Therefore, considering the characteristics of obsidians found in the Korean Peninsula including mineralogy, petrology, trace element, and isotopes chronology, the obsidians can be divided into four groups: Mt. Baekdu, southern part of Korea (Kyusu of Japan), middle part of Korea, and Wolseongdong region. These groups suggest a possibility of more than four different origins of the obsidians found in the Korean Peninsular.

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Geochemistry and K-Ar Age of the Imog Granite at the southwestern Part of the Hambaeg Basin, Korea (함백분지(咸白盆地) 남서부(南西部)에 분포(分布)하는 이목화강암(梨木花崗岩)의 지화학(地化學) 및 K-Ar 연대측정(年代測定))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.97-107
    • /
    • 1986
  • The Cretaceous Imog granite is a calc·alkaline, subsolvus monzogranite and shows characteristics of "I-type" and "magnetite·series" granite by mineralogy and chemical composition. Many of the major and trace element characteristic of the Imog granite are consistent with a relationship by fractional crystallization of a basic magma. The primary magma of the granite derived from the subduction of oceanic crust at the destructive plate margin. The granite shows light REE enrichment with (Ce/Yb)N ratios of 7.77~12.55. All the REE patterns show Eu negative anomalies ($Eu/Eu^*=0.69$) in the pluton. The Imog granite at the southwestern part of the Hambaeg basin may be intruded along the tectonic intersections of the E-W and N-S lines such as deep faults and fractures. Radiometric age determination on the granite reveals as $96.7{\pm}2.0Ma$ by K-Ar dating on biotite.

  • PDF

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

Petrochemical and Physical Characteristics of the Cretaceous Pink Granites in the Jinan Area (진안일대에 분포하는 백악기 홍색 화강암류의 암석화학 및 물성특성)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.161-177
    • /
    • 2004
  • The Cretaceous pink granites of the finan area, southwestern Ogcheon belt, are adjacently developed in the eastern part (Keg) and western part (Kwg) as stocks, respectively. Keg of rounded shape occur as mainly medium-coarse grained rocks, whereas Kwg of ellipsoidal shape occurs as medium-coarse grained ones with partly porphyritic and fine-grained textures. Miarolitic cavities of them are often seen and can be observed more frequently in Kwg than Keg. Rose and counter fracture diagrams of the two granites show that Keg and Kwg have more potentiality of non-dimension and dimension to non-dimension stones, respectively. Physical properties such as porosity and absorption ratio have 0.25% and 0.65%, and 0.43% and 1.11%, respectively, which could suggest that emissions of gas phase at later magma stages are abundant in Kwg than those of Keg. From the major and trace elements petrochemisoy, they belong to acidic, peraluminous and calc-alkaline rocks, showing that Kwg are later product than Keg of the same granitic parent magma. REE concentrations normalized to chondrite value have trends of gradual and parallel enriched LREE and depleted HREE. Eu negative anomalies of Kwg are far more severe than those of Keg, which suggest that plagioclase fractionation in Kwg was much stronger than that of Keg. In the magnetic susceptibility vs. petrochemical and modal parameters, they all belong to magnetite-series and I-types, and can be classified as weakly-moderately ferromagnetic rocks. And the above relations could suggest that their susceptibility values are more mainly depended on ferromagnetic opaques than ferromagnetic and paramagnetic assemblages (Bt + Ch + Ser + Op).