• Title/Summary/Keyword: caisson breakwaters

Search Result 44, Processing Time 0.029 seconds

Exceedance probability of allowable sliding distance of caisson breakwaters in Korea (국내 케이슨 방파제의 허용활동량 초과확률)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.495-507
    • /
    • 2009
  • The expected sliding distance for the lifetime of a caisson breakwater has a limitation to be used as the stability criterion of the breakwater. Since the expected sliding distance is calculated as the mean of simulated sliding distances for the lifetime, there is possibility for the actual sliding distance to exceed the expected sliding distance. To overcome this problem, the exceedance probability of the allowable sliding distance is used to assess the stability of sliding. Latin Hypercube sampling and Crude Monte Carlo simulation were used to calculate the exceedance probability. The doubly-truncated normal distribution was considered to complement the physical disadvantage of the normal distribution as the random variable distribution. In the case of using the normal distribution, the cross-sections of Okgye, Hwasun, and Donghae NI before reinforcement were found to be unstable in all the limit states. On the other hand, when applying the doubly-truncated normal distribution, the cross-sections of Hwasun and Donghae NI before reinforcement were evaluated to be unstable in the repairable limit state and all the limit states, respectively. Finally, the shortcoming of the expected sliding distance as the stability criterion was investigated, and we reasonably assessed the stability of sliding of caissons by using the exceedance probability of allowable sliding distance for the caisson breakwaters in Korea.

Stability Evaluation of Floating Dock during Construction and Launching of Caisson for Breakwater (방파제용 대형 케이슨 제작/진수에 따른 부양식 독의 안정성 해석)

  • Seok, Jun;Park, Jong-Chun;Jeong, Se-Min;Kim, Sung-Yong;Kang, Heon-Yong;Kim, Moo-Hyun;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • In general, huge caissons for breakwaters have been constructed on land or a floating dock. In the case of the construction on a floating dock, a 4 step installation procedure is involved: i) construction on a floating dock, ii) transportation by the floating dock to an area near the target sea, iii) launching from the floating dock, and iv) transference by tug-boats to the installation site. It is especially important to pay attention to the dynamic stability of the floating dock against the conditions in the sea during steps i) and iii). In this paper, the static and dynamic stabilities of a caisson on a floating dock are evaluated based on IMO rules during the construction and launching of the caisson on a floating dock by using independent commercial S/Ws such as NAPA, WAMIT, and CHARM3D.

Time-dependent Performance-based Design of Caisson Breakwater Considering Climate Change Impacts (기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계)

  • Suh, Kyung-Duck;Kim, Seung-Woo;Mori, Nobuhito;Mase, Hajime
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2011
  • During the past decade, the performance-based design method of caisson breakwaters has been developed, which allows a certain damage while maintaining the function of the structure. However, the existing method does not consider the changing coastal environment due to climate change impacts so that the stability of the structure is not guaranteed over the lifetime of the structure. In this paper, a time-dependent performance-based design method is developed, which is able to estimate the expected sliding distance and the probability of failure of a caisson breakwater considering the influence of sea level rise and wave height increase due to climate change. Especially, time-dependent probability of failure is calculated by considering the sea level rise and wave height increase as a function of time. The developed method was applied to the East Breakwater of the Hitachinaka Port which is located on the east coast of Japan. It was shown that the influence of wave height increase is much greater than that of sea level rise, because the magnitude of sea level rise is negligibly small compared with the water depth at the breakwater site. Moreover, investigation was made for the change of caisson width due to climate change impacts, which is the main concern of harbor engineers. The longer the structure lifetime, the greater was the increase of caisson width. The required increase of caisson width of the Hitachinaka breakwater whose width is 22 m at present was about 0.5 m and 1.5 m respectively for parabolic and linear wave height increase due to climate change.

Proposal of Sliding Stability Assessment Formulas for an Interlocking Caisson Breakwater under Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 미끌림 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Recently, the possibility of abnormal waves of which height is greater than design wave height have been increased due to the climate change, and therefore it has been urgent to secure the stability for harbor structures. As a countermeasure for improving the stability of conventional caisson breakwaters, a method has been proposed in which adjacent caissons are interlocked with each other to consecutively resist the abnormal wave forces. In order to reflect this research trend, the reduction effect of the maximum wave force resulted from introducing a long caisson has been presented in the revision to the design criteria for ports and fishing harbors and commentary. However, no method has been proposed to evaluate the stability of interlocking caisson breakwater. In this study, we consider the effect of the phase difference of the oblique incidence of the wave based on the linear wave theory and apply the Goda pressure formula for considering design wave pressure distribution in the vertical direction. Sliding stability assessment formula of an interlocking caisson breakwater is proposed for regular, irregular, and multi-directional irregular wave conditions.

Reflection and Dissipation Characteristics of Non-overtopping Quarter Circle Breakwater with Low-mound Rubble Base

  • Balakrishna, K;Hegde, Arkal Vittal;Binumol, S
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Breakwaters are the coastal structures constructed either perpendicular (shore connected) or parallel (detached) to the coast. The main function of breakwater is to create a tranquil medium on its leeside by reflecting the waves and also dissipating the wave energy arriving from seaside, resulting in ease of manoeuvrability to boats or ships to their berthing places. Different types of breakwaters are being used at present, such as rubble mound breakwater, vertical wall type breakwater and composite breakwater. The objective of this paper is to investigate reflection coefficients (Kr) and dissipation (loss) coefficients (Kl) for physical models of Quarter circle caisson breakwater of three different radii of 0.550 m, 0.575 m and 0.600 m with S/D ratio of 2.5 (S=spacing between perforations, D=diameter of perforations). The models were tested in the monochromatic wave flume of the department, for different incident wave heights (Hi), Wave periods (T) and water depths (d). It was observed that reflection coefficient increased with increase in the wave steepness (Hi/gT2) and decreased with increase in depth parameter (d/gT2) and hs/d (Height of structure including rubble base/depth of water). The loss coefficient decreased with increase in the wave steepness and increased with increase in depth parameter and hs/d.

Numerical Analysis of Modified Seabed Topography Due to the Presence of Breakwaters of Varying Reflection Characteristics using Physics-based Morphology Model [SeoulFoam] (방파제 형식에 따른 반사율 변화가 해저지형에 미치는 영향 수치해석: 물리기반 지형모형 SeoulFoam을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.168-178
    • /
    • 2021
  • Numerical simulations were implemented to look into the modified seabed topography due to the presence of breakwaters of varying reflection characteristics. The numerical model was composed of OlaFlow, an OpenFoam-based tool box, and a physics-based morphology model [Seoul Foam]. In doing so, the interaction between the seabed, which undergoes deformation due to siltation and scouring, and the incoming waves was described using Dynamic Mesh. The rubble-mound, vertical, and curved slit caisson breakwaters with varying reflection characteristics resulted in standing waves that differ from each other, shown to have a significant influence on the seabed topography. These results are in line with Nielsen's study (1993) that sands saltated under the surface nodes of standing waves, where the near-bed velocities are most substantial, convected toward the surface antinodes by boundary-layer drift. Moreover, the crest of sand waves was formed under the surface antinodes of standing waves, and the trough of sand waves was formed under the surface antinodes. In addition, sand wave amplitude reaches its peak in the curved slit caisson with a significant reflection coefficient, and the saltation of many grains of sand would cause this phenomenon due to the increased near-bed velocity under the nodes when the reflection coefficient is getting large.

Consideration on Ways to Reduce a Edge Pressure at Bottom Plate of Caisson Breakwaters (케이슨 방파제 바닥판 단부 지지력 저감방안에 대한 고찰)

  • Park, Woo-Sun;Lee, Byeong Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2020
  • In this study, ways to reduce the edge pressure at the bottom plate of the caisson breakwater were considered. The water depth, freeboard, design wave height and period, and the location of the center of gravity on the super-structure of the breakwater were selected as key design variables that influence the edge pressure, and analyzed how the edge pressure changes according to the change of this key variables. The pressure distribution formulae suggested in the design standard was applied for the calculation of design wave forces. Based on the wave forces, the required effective self-weight of the super-structure and the minimum width of the caisson were determined to have a safety factor of 1.2 against sliding and overturning. From the results, it was found that the edge pressure rapidly increased as the water depth increased, and could exceed the allowable bearing capacity when it reached a certain water depth which is 20 m within the analysis conditions. It was also confirmed that the edge pressure gradually increased linearly as the freeboard increased, but decreased with the increase of the wave height and period. This edge pressure could be significantly reduced up to more than 20% by moving the center of gravity of the super-structure to the seaside, which is 5% of the caisson width. Based on the analysis results and the recently conducted research results, a method was proposed to reduce the edge pressure that can be used in the design.

Wave Reflection of Perforated-Wall Caisson Breakwaters with Curtain-Wall (직립 유공케이슨 방파제의 현수판 사용에 따른 반사특성)

  • Lee, Seung Hyeob;Hwang, Jong Kil;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1454-1458
    • /
    • 2004
  • 본 인구에서는 직립 유공 케이슨에 현수판을 설치함으로서 입사파의 반사율을 저감시키고자 하였다. 먼저 케이슨 단면의 적정 유공율을 선정하기 위해 횡 SLIT 케이슨식 2개안 및 종 SLIT 1개안 단면에 대한 단면 실험을 실시하였다. 선행된 실험에서 가장 반사율이 낮은 SLIT 케이슨을 선택하여 유수실에 현수판을 설치 하였으며 현수판의 설치유무 및 현수판의 길이에 따른 반사계수를 검토하였다. 설치된 현수판은 장주기파에 대해서 반사율 저감효과를 얻을 수 없었지만 단주기 파에서는 반사율이 줄어드는 효과를 얻을 수 있었다. 해역에따라 단주기가 주류를 이루는 해역에서 현수판을 설치하면 파랑내습시 소파효과가 증대될 것으로 기대된다.

  • PDF

Comparison of the Formulas for the Wave Forces Acting on the Perforated Caisson Breakwater (유공케이슨 방파제에 작용하는 파력 공식의 비교)

  • Ji, Chang-Hwan;Oh, Sang-Ho;Oh, Young-Min;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.217-227
    • /
    • 2015
  • In this study, two-dimensional physical experiment was carried out to examine the applicability of the three formulas(Takahashi and Shimosako, 1994; Tabet-Aoul and Lambert, 2003; Li, 2007), which were proposed to calculate the wave forces acting on perforated caisson breakwaters. In order to quantitatively compare the measured with the estimated values based on the wave formulas, the refined index of agreement and the coefficient of determination were calculated, by which the degree of agreement was evaluated. Among the three wave formulas, DUT formula (Li, 2007) showed the smallest deviation from the measured forces, whereas Takahashi formula (Takahashi and Shimosako, 1994) showed the largest deviation. Meanwhile, comparison of the magnitude of the measured wave forces with those from the three formulas revealed that DUT formula slightly underestimate, while the others overestimate the measured forces.

Stability Evaluation of Rear-Parapet Caisson Breakwaters under Regular Waves by Numerical Simulation (수치해석을 통한 규칙파를 받는 후부 패러핏 케이슨 방파제의 안정성 평가)

  • Lee, Byeong Wook;Park, Woo-Sun;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, using the CADMAS-SURF model, the characteristics of the wave pressures and the wave forces were analyzed according to the installation position of the parapet on top of the caisson, and the stability evaluation was carried out using estimated wave forces for the design wave condition. Numerical results show that adopting the rear-parapet reduces the front maximum wave pressures and wave forces, and the maximum wave pressure acting on the rear-parapet increases slightly compared to the front parapet, but the wave force acting on the rear-parapet has little effect on the stability of the breakwater due to the phase difference with the wave force acting on the front of the breakwater. In addition, impulsive wave pressures did not occur, as Yamamoto et al. (2013) pointed out the problem of the rear-parapet breakwater. As a result of the stability against sliding and overturning, it was estimated that the target safety factor of 1.2 could be secured by the self-weight of 13% less than the case of the front parapet. At this time, the maximum ground pressure was also reduced by 30%, and the applicability of the rear-parapet structure to the actual site was evaluated as high.