• Title/Summary/Keyword: caecum microbials

Search Result 2, Processing Time 0.017 seconds

Effect of Pitamin as an Antibiotics Replacement for Organic livestock Feed Additives in Broiler Chickens (유기사료원료로서 소나무껍질 추출물 피타민의 브로일러에 대한 항생제 대체효과)

  • Kim, Byong-Wan;Oh, Jin-Seok;Han, Ohan-Taek;Park, Sang-Oh;Park, Byung-Sung
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.111-125
    • /
    • 2009
  • Pitamin is a component of pine bark extract that exhibits antimicrobial activity and a variety of physiological effects. This study was earned out to investigate the effects of dietary pitamin as an organic livestock feed additive in broiler chickens. A 35 day trial was conducted to determine the influence of dietary premix containing 5% pitamin; investigated parameters included blood lipids, growth performance, quality characteristics of carcasses, and changes of caecal microbials in broiler chickens. Chickens were randomly divided into groups that were untreated (control), treated conventionally with antibiotics in the absence of premix, received 0.1 % or 0.2% premix containing 5% pitamin. Plasma lipids were lower in groups fed diets with pitamin premix (p<0.05). The body weight gain from broiler chickens fed with the diet containing 0.1% pitamin premix and antibiotics was similar, and was significantly higher than that of the other groups (p<0.05). The weight of breast muscle and thigh meat of carcasses was similar, and was higher than that of the control group (p<0.05). Abdominal fat and thymus index from chickens receiving either pitamin-supplemented premix was significantly lower and increased, respectively, that of the antibiotic and control groups (both p<0.05). The chickens on the pitamin premix-supplemented diets evidenced significantly higher caecal levels of Bifidobacterium species as compared with the chickens on the control diet (p<0.05). These results suggest that feeding a diet supplemented with a 0.1% premix containing 5.0% pitamin for 35 days maintains the production of broiler chickens at a level comparable to that obtained from the use of antibiotics.

  • PDF

Effect of Dietary Inuloprebiotics on Performance, Serum Immunoglobulin and Caecal Microflora in Broiler Chickens (이눌로프리바이오틱스의 사료 내 첨가가 육계의 성장능력, 혈액 면역물질 및 맹장 미생물에 미치는 영향)

  • Park, Sang-Oh;Park, Byung-Sung
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.4
    • /
    • pp.539-555
    • /
    • 2009
  • The potential of encapsulated inuloprebiotics from domestic Jerusalem artichokes (Helianthustuberosus) as natural antibacterial growth promotor for an antibiotic replacement in broiler chickens was presently assessed through assays of growth performance, serum immunoglobulin production and influence on caecal microflora. Two hundred-forty, 1-day-old, male broilers (Ross 308) were randomly allotted to four treatments (T1-T4), with three replicate pens per treatment and 20 chicks per pen. Broiler chicks were fed a basal diet (T1: control) or basal diet plus antibiotics (T2: Chlorotetracycline, 0.10%), 300 ppm of the inuloprebiotics (T3), or 450 ppm of the inuloprebiotics (T4) for 35 days. Body weight, dressing percentage or weight of breast and thigh muscles relative to carcass weight of T3 and T4 broiler chickens was significantly (P<0.05) higher than T1 and T2 broiler chickens. The weight of abdominal fat from T3 and T4 broiler chickens were significantly (P<0.05) lower than that of T1 and T2 chickens. Serum immunoglobulins in the T3 and T4 groups were significantly (P<0.05) elevated compared to the T1 and T2 groups. The weight of immune organs, thymus and Bursa of Fabricius relative to live body weight in the T3 and T4 groups were significantly (P<0.05) higher than the T1 and T2 groups. Bifidobacteria and Lactobacillus, which are beneficial bacteria, were present in greater numbers in the caecum of T3 and T4 birds than T1 and T2 groups, whereas potentially harmful Escherichiacoli and Salmonella were present in lower numbers, with differences being significant (P<0.05). These results suggest that a diet supplemented with 300 ppm of inuloprebiotics has potential as an antibiotic replacement for organic livestock feed supplement intended to improve production of broiler chicken.

  • PDF