• Title/Summary/Keyword: cache storage

Search Result 138, Processing Time 0.027 seconds

Task failure resilience technique for improving the performance of MapReduce in Hadoop

  • Kavitha, C;Anita, X
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.748-760
    • /
    • 2020
  • MapReduce is a framework that can process huge datasets in parallel and distributed computing environments. However, a single machine failure during the runtime of MapReduce tasks can increase completion time by 50%. MapReduce handles task failures by restarting the failed task and re-computing all input data from scratch, regardless of how much data had already been processed. To solve this issue, we need the computed key-value pairs to persist in a storage system to avoid re-computing them during the restarting process. In this paper, the task failure resilience (TFR) technique is proposed, which allows the execution of a failed task to continue from the point it was interrupted without having to redo all the work. Amazon ElastiCache for Redis is used as a non-volatile cache for the key-value pairs. We measured the performance of TFR by running different Hadoop benchmarking suites. TFR was implemented using the Hadoop software framework, and the experimental results showed significant performance improvements when compared with the performance of the default Hadoop implementation.

Extended Buffer Management with Flash Memory SSDs (플래시메모리 SSD를 이용한 확장형 버퍼 관리)

  • Sim, Do-Yoon;Park, Jang-Woo;Kim, Sung-Tan;Lee, Sang-Won;Moon, Bong-Ki
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.308-314
    • /
    • 2010
  • As the price of flash memory continues to drop and the technology of flash SSD controller innovates, high performance flash SSDs with affordable prices flourish in the storage market. Nevertheless, it is hard to expect that flash SSDs will replace harddisks completely as database storage. Instead, the approach to use flash SSD as a cache for harddisks would be more practical, and, in fact, several hybrid storage architectures for flash memory and harddisk have been suggested in the literature. In this paper, we propose a new approach to use flash SSD as an extended buffer for main buffer in database systems, which stores the pages replaced out from main buffer and returns the pages which are re-referenced in the upper buffer layer, improving the system performance drastically. In contrast to the existing approaches to use flash SSD as a cache in the lower storage layer, our approach, which uses flash SSD as an extended buffer in the upper host, can provide fast random read speed for the warm pages which are being replaced out from the limited main buffer. In fact, for all the pages which are missing from the main buffer in a real TPC-C trace, the hit ratio in the extended buffer could be more than 60%, and this supports our conjecture that our simple extended buffer approach could be very effective as a cache. In terms of performance/price, our extended buffer architecture outperforms two other alternative approaches with the same cost, 1) large main buffer and 2) more harddisks.

5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model

  • Kim, Sungwook
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2018
  • In this study, we developed hybrid control algorithms in smart base stations (SBSs) along with devised communication, caching, and computing techniques. In the proposed scheme, SBSs are equipped with computing power and data storage to collectively offload the computation from mobile user equipment and to cache the data from clouds. To combine in a refined manner the communication, caching, and computing algorithms, game theory is adopted to characterize competitive and cooperative interactions. The main contribution of our proposed scheme is to illuminate the ultimate synergy behind a fully integrated approach, while providing excellent adaptability and flexibility to satisfy the different performance requirements. Simulation results demonstrate that the proposed approach can outperform existing schemes by approximately 5% to 15% in terms of bandwidth utilization, access delay, and system throughput.

Design of Low-Power Object-based Mobile Storage System by WLAN Power Control (WLAN 전력제어를 통한 저전력 객체기반 모바일 스토리지 시스템의 설계)

  • Jeon, Young-Joon;Choi, Min-Seok;Nam, Young-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06b
    • /
    • pp.441-444
    • /
    • 2007
  • 본 논문에서는 객체기반 IP 스토리지를 이용하여 모바일 기기에서 멀티미디어 콘텐츠 재생에 적합한 저전력 객체기반 모바일 스토리지 시스템 구조를 제안한다. 멀티미디어 콘텐츠의 재생 성능을 높이기 위해 모바일 단말 측 OSD 계층에 버퍼 캐시(buffer cache)와 선반입(prefetch) 기능을 추가한다. 그리고 모바일 단말의 WLAN 전력제어를 통하여 WLAN이 가능한 한 오랜 시간 동안 Sleep 상태 또는 Power Off 상태에 있을 수 있도록 하여 전력의 소비를 줄인다. 본 연구에서는 캐시 및 선반입 기능을 위해 버퍼 캐시관리자(buffer cache manager)와 선반입 관리자(prefetch manager)를 설계하였고, WLAN 전력관리 기능을 위해 WLAN 관리자(WLAN manager)를 설계하였다.

  • PDF

AN ADVACNCED DISK BLOCK CACHING ALGORITHM FOR DISK I/O SUB-SYSTEM

  • Jung, Soo-Mok;Rho, Kyung-Taeg
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.43-52
    • /
    • 2007
  • A hard disk, which can be classified as an external storage is usually capacious and economical. In spite of the attractive characteristics and efforts on the performance improvement, however, the operation of the hard disk is apparently slower than a processor and the advancement has also been slowly conducted since it is based on mechanical process. On the other hand, the advancement of the processor has been drastically performed as semiconductor technology does. So, disk I/O sub-system becomes bottleneck of computer systems' performance. For this reason, the research on disk I/O sub-system is in progress to improve computer systems' performance. In this paper, we proposed multi-level LRU scheme and then apply it to the computer systems with buffer cache and disk cache. By applying the proposed scheme to computer systems, the average access time to disk blocks can be decreased. The efficiency of the proposed algorithm was verified by simulation results.

  • PDF

The Efficient Buffer Size in A Dual Flash Memory Structure with Buffer System (이중 NAND 플래시 구조의 버퍼시스템에서 효율적 버퍼 크기)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.383-391
    • /
    • 2011
  • As we know the effects of cache memory research, instruction and data caches can be separated for higher performance with Harvard CPUs. In this paper, we shows the efficiency of buffer system in the instruction and data flash storage medium. And we analyzed characteristics of the data and instruction flash and evaluated the performance. Finally, we propose the best buffer structure with an optimal block size and buffer size for the instruction and data flash.

Locally weighted linear regression prefetching method for hybrid memory system (하이브리드 메모리 시스템의 지역 가중 선형회귀 프리페치 방법)

  • Tang, Qian;Kim, Jeong-Geun;Kim, Shin-Dug
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.12-15
    • /
    • 2020
  • Data access characteristics can directly affect the efficiency of the system execution. This research is to design an accurate predictor by using historical memory access information, where highly accessible data can be migrated from low-speed storage (SSD/HHD) to high-speed memory (Memory/CPU Cache) in advance, thereby reducing data access latency and further improving overall performance. For this goal, we design a locally weighted linear regression prefetch scheme to cope with irregular access patterns in large graph processing applications for a DARM-PCM hybrid memory structure. By analyzing the testing result, the appropriate structural parameters can be selected, which greatly improves the cache prefetching performance, resulting in overall performance improvement.

Advanced Disk Block Caching Algorithm for Disk I/O sub-system (디스크 입출력 서브시스템을 위한 개선된 디스크 블록 캐싱 알고리즘)

  • Jung, Soo-Mok;Rho, Kyung-Taeg
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.139-146
    • /
    • 2007
  • A hard disk. which can be classified as an external storage is usually capacious and economical. In spite of the attractive characteristics and efforts on the performance improvement, however, the operation of the hard disk is apparently slower than a processor and the advancement has also been slowly conducted since it is based on mechanical process. On the other hand. the advancement of the processor has been drastically performed as semiconductor technology does. So, disk I/O sub-system becomes bottleneck of computer systems' performance. For this reason. the research on disk I/O sub-system is in progress to improve computer systems' performance. In this paper, we proposed multi-level LRU scheme and then apply it to the computer systems with buffer cache and disk cache. By applying the proposed scheme to computer systems. the average access time to ask blocks can be decreased. The efficiency of the proposed algorithm was verified by simulation results.

  • PDF

An Address Translation Technique Large NAND Flash Memory using Page Level Mapping (페이지 단위 매핑 기반 대용량 NAND플래시를 위한 주소변환기법)

  • Seo, Hyun-Min;Kwon, Oh-Hoon;Park, Jun-Seok;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.371-375
    • /
    • 2010
  • SSD is a storage medium based on NAND Flash memory. Because of its short latency, low power consumption, and resistance to shock, it's not only used in PC but also in server computers. Most SSDs use FTL to overcome the erase-before-overwrite characteristic of NAND flash. There are several types of FTL, but page mapped FTL shows better performance than others. But its usefulness is limited because of its large memory footprint for the mapping table. For example, 64MB memory space is required only for the mapping table for a 64GB MLC SSD. In this paper, we propose a novel caching scheme for the mapping table. By using the mapping-table-meta-data we construct a fully associative cache, and translate the address within O(1) time. The simulation results show more than 80 hit ratio with 32KB cache and 90% with 512KB cache. The overall memory footprint was only 1.9% of 64MB. The time overhead of cache miss was measured lower than 2% for most workload.

Analysis of flash memory characteristics as storage medium of mobile equipments (휴대단말기 저장매체인 플래시 메모리 특성 분석)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.4
    • /
    • pp.115-120
    • /
    • 2011
  • Recently flash memory is widely used in various mobile devices as storage medium. Nonvolatile memory can be divided into two categories: NAND- and NOR-type flash memory. NOR flash memory is mainly used to store instruction codes for operation; while NAND for data storage. However, NAND does show more economical benefits, that is, it is approximately 30~40% cheaper than NOR flash. Therefore it can be useful to improve NAND flash performance by replacing NOR flash with NAND flash combining with various buffer systems.

  • PDF