• Title/Summary/Keyword: cache replacement

Search Result 168, Processing Time 0.02 seconds

Preventing Fast Wear-out of Flash Cache with An Admission Control Policy

  • Lee, Eunji;Bahn, Hyokyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.546-553
    • /
    • 2015
  • Recently, flash cache is widely adopted as the performance accelerator of legacy storage systems. Unlike other cache media, flash cache should be carefully managed as it has peculiar characteristics such as long write latency and limited P/E cycles. In particular, we make two prominent observations that can be utilized in managing flash cache. First, a serious worn-out problem happens when the working-set of a system is beyond the capacity of flash cache due to excessively frequent cache replacement. Second, more than 50% of data has no hit in flash cache as it is a second level cache. Based on these observations, we propose a cache admission control policy that does not cache data when it is first accessed, and inserts it into the cache only after its second access occurs within a certain time window. This allows the filtering of data disruptive to flash cache in terms of endurance and performance. With this policy, we prolong the lifetime of flash cache 2.3 times without any performance degradations.

SBR-k(Sized-base replacement-k) : File Replacement in Data Grid Environments (SBR-k(Sized-based replacement-k) : 데이터 그리드 환경에서 파일 교체)

  • Park, Hong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.57-64
    • /
    • 2008
  • The data grid computing provides geographically distributed storage resources to solve computational problems with large-scale data. Unlike cache replacement policies in virtual memory or web-caching replacement, an optimal file replacement policy for data grids is the one of the important problems by the fact that file size is very large. The traditional file replacement policies such as LRU(Least Recently Used), LCB-K(Least Cost Beneficial based on K), EBR(Economic-based cache replacement), LVCT(Least Value-based on Caching Time) have the problem that they have to predict requests or need additional resources to file replacement. To solve theses problems, this paper propose SBR-k(Sized-based replacement-k) that replaces files based on file size. The proposed policy considers file size to reduce the number of files corresponding to a requested file rather than forecasting the uncertain future for replacement. The results of the simulation show that hit ratio was similar when the cache size was small, but the proposed policy was superior to traditional policies when the cache size was large.

WWW Cache Replacement Algorithm Based on the Network-distance

  • Kamizato, Masaru;Nagata, Tomokazu;Taniguchi, Yuji;Tamaki, Shiro
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.238-241
    • /
    • 2002
  • With the popularity of utilization of the Internet among people, the amount of data in the network rapidly increased. So that, the fall of response time from WWW server, which is caused by the network traffic and the burden on m server, has become more of an issue. This problem is encouraged the rearch by redundancy of requesting the same pages by many people, even though they browse the same the ones. To reduce these redundancy, WWW cache server is used commonly in order to store m page data and reuse them. However, the technical uses of WWW cache that different from CPU and Disk cache, is known for its difficulty of improving the cache hit rate. Consecuently, it is difficult to choose effective WWW data to be stored from all data flowing through the WWW cache server. On the other hand, there are room for improvement in commonly used cache replacement algorithms by WWW cache server. In our study, we try to realize a WWW cache server that stresses on the improvement of the stresses of response time. To this end, we propose the new cache replacement algorithm by focusing on the utilizable information of network distance from the WWW cache server to WWW server that possessing the page data of the user requesting.

  • PDF

Reuse Information based Thrashing Resistant Cache Management Scheme

  • Sim, Gyu Yeon;Kim, Cheol Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.9-16
    • /
    • 2017
  • In recent computing systems, LRU replacement policy has been widely used because it can be simply implemented and applicable to most programs. However, if the working set size of the program is bigger than the actual cache size, LRU replacement policy may occur thrashing problem. Thrashing problem means that cache blocks are consistently replaced without re-referencing in the cache. This paper proposes a new cache management scheme to solve the thrashing problem in the second-level cache. The proposed scheme measures per set reuse frequency using EAF structure to find thrashing sets. When the cache miss occurs, it tests whether the address of the missed block is stored or not. If the address of the missed block is stored, it means that the recently evicted block is re-requested, so the reuse frequency is predicted high. In this case, the corresponding counter of the set is increased. When the counter value is bigger than the threshold value, we assume that the corresponding set shows high reuse frequency. The proposed scheme assigns the set with high reuse frequency to the additional small size cache to keep the blocks in the cache for a long time. Our experimental results show that the proposed scheme improves the IPC by 3.81% on average.

A Video Cache Replacement Scheme based on Local Video Popularity and Video Size for MEC Servers

  • Liu, Pingshan;Liu, Shaoxing;Cai, Zhangjing;Lu, Dianjie;Huang, Guimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3043-3067
    • /
    • 2022
  • With the mobile traffic in the network increases exponentially, multi-access edge computing (MEC) develops rapidly. MEC servers are deployed geo-distribution, which serve many mobile terminals locally to improve users' QoE (Quality of Experience). When the cache space of a MEC server is full, how to replace the cached videos is an important problem. The problem is also called the cache replacement problem, which becomes more complex due to the dynamic video popularity and the varied video sizes. Therefore, we proposed a new cache replacement scheme based on local video popularity and video size to solve the cache replacement problem of MEC servers. First, we built a local video popularity model, which is composed of a popularity rise model and a popularity attenuation model. Furthermore, the popularity attenuation model incorporates a frequency-dependent attenuation model and a frequency-independent attenuation model. Second, we formulated a utility based on local video popularity and video size. Moreover, the weights of local video popularity and video size were quantitatively analyzed by using the information entropy. Finally, we conducted extensive simulation experiments based on the proposed scheme and some compared schemes. The simulation results showed that our proposed scheme performs better than the compared schemes in terms of hit rate, average delay, and server load under different network configurations.

A Weighted-window based Cache Replacement Policy for Streaming Cache Server (스트리밍 캐쉬 서버를 위한 가중치 윈도우 기반의 캐쉬 교체 정책)

  • 오재학;차호정;박병준
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.556-568
    • /
    • 2003
  • This paper presents and analyzes the performance of a weighted-window based cache replacement policy for the efficient media caching in streaming media cache servers. The proposed policy makes, for each cached object, use of the reference count, reference time, amount of media delivered to clients and, in particular, the periodic patterns of user requests. Also, by giving weights to the recently referenced media contents, the replacement policy adequately and swiftly reflects the ever-changing characteristics of users preferences. The simulation studies show that the performance of the proposed policy has improved over the conventional policies such as LRU, LFU and SEG - in terms of hit ratio, byte hit ratio, delayed start and cache input.

Analysis and Improvement of the DPW-LRU Cache Replacement Algorithm for Flash Translation Layer (플래시 변환 계층을 위한 DPW-LRU 캐시 교체 알고리즘 분석 및 개선)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.289-297
    • /
    • 2020
  • Although flash disks are being used widely instead of hard disks, it is difficult to optimize for effective utilization of flash disks because overwrite in place is impossible and the power consumption and time required for read, write, and erase operations are all different. One of these optimization issues is a cache management strategy to minimize write operations. The cache operates at two levels: an operating system equipped with flash disks and a translation layer within the flash disk. Most studies deal with the operating system-level cache strategy. In this study, we implement and analyse the DPW-LRU algorithm which is one of the recently proposed operating system cache replacement algorithms to apply to FTL, and grope with some improvements. As a result of the experiment, the DPW-LRU algorithm maintained superiority even in the FTL environment, and showed better performance with a slight improvement.

A Study on Design and Cache Replacement Policy for Cascaded Cache Based on Non-Volatile Memories (비휘발성 메모리 시스템을 위한 저전력 연쇄 캐시 구조 및 최적화된 캐시 교체 정책에 대한 연구)

  • Juhee Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.106-111
    • /
    • 2023
  • The importance of load-to-use latency has been highlighted as state-of-the-art computing cores adopt deep pipelines and high clock frequencies. The cascaded cache was recently proposed to reduce the access cycle of the L1 cache by utilizing differences in latencies among banks of the cache structure. However, this study assumes the cache is comprised of SRAM, making it unsuitable for direct application to non-volatile memory-based systems. This paper proposes a novel mechanism and structure for lowering dynamic energy consumption. It inserts monitoring logic to keep track of swap operations and write counts. If the ratio of swap operations to total write counts surpasses a set threshold, the cache controller skips the swap of cache blocks, which leads to reducing write operations. To validate this approach, experiments are conducted on the non-volatile memory-based cascaded cache. The results show a reduction in write operations by an average of 16.7% with a negligible increase in latencies.

  • PDF

Web Proxy Cache Replacement Algorithms using Object Type Partition (개체 타입별 분할공간을 이용한 웹 프락시 캐시의 대체 알고리즘)

  • Soo-haeng, Lee;Sang-bang, Choi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.399-410
    • /
    • 2002
  • Web cache, which is functionally another word of proxy server, is located between client and server. Web cache has a limited storage area although it has broad bandwidth between client and proxy server, which are usually connected through LAN. Because of limited storage capacity, existing objects in web cache can be deleted for new objects by some rules called replacement algorithm. Hit rate and byte-hit rate are general metrics to evaluate replacement algorithms. Most of the replacement algorithms do satisfy only one metric, or sometimes none of them. In this paper, we propose two replacement algorithms to achieve both high hit rate and byte-hit rate with great satisfaction. In the first algorithm, the cache is appropriately partitioned according to file types as a basic model. In the second algorithm, the cache is composed of two levels; the upper level cache is managed by the basic algorithm, but the lower level is collectively used for all types of files as a shared area. To show the performance of the proposed algorithms, we evaluate hit rate and byte-hit rate of the proposed replacement algorithms using the trace driven simulation.

Delay Attenuation LFU (DA-LFU) Cache Replacement Policy to Improve Hit Rates in CCN (CCN에서 적중률 향상을 위한 지연감쇠 LFU(DA-LFU) 캐시 교체 정책)

  • Ban, Bin;Kwon, Tae-Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.3
    • /
    • pp.59-66
    • /
    • 2020
  • Content Centric Network(CCN) with architecture that is completely different from traditional host-based networks has emerged to address problems such as the explosion of traffic load in the current network. Research on cache replacement policies is very active to improve the performance of CCN with the characteristics that all routers cache on the network. Therefore, this paper proposes a cache replacement policy suitable for situations in which popularity is constantly changing, taking into account the actual network situation. In order to evaluate the performance of the proposed algorithm, we experimented in an environment where the popularity of content is constantly changing, and confirmed that we are superior to the existing replacement policy through comparing hit rates and analyzing server load.