• Title/Summary/Keyword: cable-supported bridges

Search Result 85, Processing Time 0.031 seconds

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

Flutter analysis of long-span bridges using ANSYS

  • Hua, X.G.;Chen, Z.Q.;Ni, Y.Q.;Ko, J.M.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.61-82
    • /
    • 2007
  • This paper presents a novel finite element (FE) model for analyzing coupled flutter of long-span bridges using the commercial FE package ANSYS. This model utilizes a specific user-defined element Matrix27 in ANSYS to model the aeroelastic forces acting on the bridge, wherein the stiffness and damping matrices are expressed in terms of the reduced wind velocity and flutter derivatives. Making use of this FE model, damped complex eigenvalue analysis is carried out to determine the complex eigenvalues, of which the real part is the logarithm decay rate and the imaginary part is the damped vibration frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity, the structural system incorporating fictitious Matrix27 elements has a complex eigenvalue with zero or near-zero real part, with the imaginary part of this eigenvalue being the flutter frequency. Case studies are provided to validate the developed procedure as well as to demonstrate the flutter analysis of cable-supported bridges using ANSYS. The proposed method enables the bridge designers and engineering practitioners to analyze flutter instability by using the commercial FE package ANSYS.

Effect of rain on flutter derivatives of bridge decks

  • Gu, Ming;Xu, Shu-Zhuang
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.209-220
    • /
    • 2008
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. Many studies have been performed on the methods and applications of identification of flutter derivatives of bridge decks under wind action. In fact, strong wind, especially typhoon, is always accompanied by heavy rain. Then, what is the effect of rain on flutter derivatives and flutter critical wind speed of bridges? Unfortunately, there have been no studies on this subject. This paper makes an initial study on this problem. Covariance-driven Stochastic Subspace Identification (SSI in short) which is capable of estimating the flutter derivatives of bridge decks from their steady random responses is presented first. An experimental set-up is specially designed and manufactured to produce the conditions of rain and wind. Wind tunnel tests of a quasi-streamlined thin plate model are conducted under conditions of only wind action and simultaneous wind-rain action, respectively. The flutter derivatives are then extracted by the SSI method, and comparisons are made between the flutter derivatives under the two different conditions. The comparison results tentatively indicate that rain has non-trivial effects on flutter derivatives, especially on and $H_2$ and $A_2$thus the flutter critical wind speeds of bridges.

Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges (다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교)

  • Choi, Eun Soo;Kim, Lee Hyeon;Park, Joo Nam;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.587-597
    • /
    • 2007
  • Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.

Safety Evalution of on the cable of Extra dosed bridges by fire (화재에 대한 Extra-dosed교 케이블의 안전성 평가)

  • Rhu, Bong-Jo;Song, Young-Sun;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.23-33
    • /
    • 2008
  • Extra dosed bridge among the Cabled-stayed bridges have been increasingly built in korea in recently. But such bridges were often damaged by fire due to car collison. In this study Extra dosed bridges among the cabled-supported bridges are selected to analysis model frequently to be designed and/or constructed in recent and furture in this study. COSMOS FloWorks 2007 software are used for Heat Transfer Analysis and Thermal Stress Analysis. The safety of wire, HDPE pipe and stainless steel pipe are investigated. In the case of the constant of the temperature of the heat source, the significant three variables for the analysis are selected for study : (1) the distance between the fire-proof bulk head and the heat source, (2) wind velocity, (3) the height of the end of Stainless steel pipe.

Experimental study of vibration characteristics of FRP cables based on Long-Gauge strain

  • Xia, Qi;Wu, JiaJia;Zhu, XueWu;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.735-742
    • /
    • 2017
  • Steel cables as the most important components are widely used in the certain types of structures such as cable-supported bridges, but the long-span structures may result in an increase in fatigue under high stress and corrosion of steel cables. The traditional steel cable is becoming a more evident hindrance. Fiber Reinforced Polymer (FRP) cables with lightweight, high-strength are widely used in civil engineering, but there is little research in vibrational characteristics of FRP cables, especially on the damping characteristic. This article studied the two methods to evaluate dynamical damping characteristic of basalt FRP(BFRP) and glass FRP(GFRP) cables. First, the vibration tests of the B/G FRP cables with different diameter and different cable force were executed. Second, the cables forces were calculated using dynamic strain, static strain and dynamic acceleration respectively, which were further compared with the measured force. Third, experimental modal damping of each cables was calculated by the half power point method, and was compared with the calculation by Rayleigh damping theory and energy dissipation damping theory. The results indicate that (1) The experimental damping of FRP cables decreases with the increase of cable force, and the trend of experimental damping changes is roughly similar with the theoretical damping. (2) The distribution of modal damping calculated by Rayleigh damping theory is closer to the experimental results, and the damping performance of GFRP cables is better than BFRP cables.

Estimation of Design Wind Speed Compatible for Long-span Bridge in Western and Southern Sea (서남해안 장대교량에 적합한 설계 풍속 산정)

  • Kim, Han Soo;Lee, Hyun Ho;Cho, Doo Young;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • Recently there are many long span cable supported bridges like Cable Stayed Bridge and Suspension Bridge already constructed or planned. Reconsidering of proper design wind load of long span bridge is required since the meteorological value based on the data only from 1960s to 1995 has been used when we estimate the wind load for designing long span bridges. In this paper, the research area was confined to western and southern coasts where many long span bridges have constructed. The method of moment and the least-squares method were used to estimate the expected wind speeds of 100 year's return period for girder bridges and for 200 year's return period for long span bridges based on the Gumbel's distribution. As the return-period wind speed on the land face was revised because of recent high speed velocity, the revised return-period wind speed is increased by 17%. Compatibility of return-period wind speed was also evaluated using RMS (Root Mean Square) error method. Aa a result of this paper, the least-squares method is more compatible than the method of moment in the case of western and southern coasts in Korea.

Development of Steel Composite Cable Stayed Bridge Weigh-in-Motion System using Artificial Neural Network (인공신경망을 이용한 강합성 사장교 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.799-808
    • /
    • 2008
  • The analysis of vehicular loads reflecting the domestic traffic circumstances is necessary for the development of adequate design live load models in the analysis and design of cable-supported bridges or the development of fatigue load models to predict the remaining lifespan of the bridges. This study intends to develop an ANN(artificial neural network)-based Bridge WIM system and Influence line-based Bridge WIM system for obtaining information concerning the loads conditions of vehicles crossing bridge structures by exploiting the signals measured by strain gauges installed at the bottom surface of the bridge superstructure. This study relies on experimental data corresponding to the travelling of hundreds of random vehicles rather than on theoretical data generated through numerical simulations to secure data sets for the training and test of the ANN. In addition, data acquired from 3 types of vehicles weighed statically at measurement station and then crossing the bridge repeatedly are also exploited to examine the accuracy of the trained ANN. The results obtained through the proposed ANN-based analysis method, the influence line analysis method considering the local behavior of the bridge are compared for an example cable-stayed bridge. In view of the results related to the cable-stayed bridge, the cross beam ANN analysis method appears to provide more remarkable load analysis results than the cross beam influence line method.

Estimation Model for Approximate Construction Quantities of Suspension Bridge in Early Stage (사업기획단계에서의 현수교의 물량추정을 위한 모델연구)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • Bridge construction cost estimates have generally been conducted by using historial unit-price(per meter or square meter). The traditional estimating method based on unit-price references can never completely reflect the specialty of cable supported bridge. In this paper, we have developed the system for supporting the approximate construction cost and the quantity estimation based on 3D model information in the pre-project planning phase of 3-span continuous suspension bridge with 2-pylons. First of all, we'd analyzed the design information (such as structural design report, blueprint and quantity) and the real cost data from the existing suspension bridges and derived the design variables of the bridges. We developed the BIM wizard that generates a suspension bridge model parametrically based on derived design variables. The principle material quantities of suspension bridge are calculated directly from 3-dimensional bridge model built by using the BIM wizard. We have established the system that the construction cost can be estimated more specific than the traditional estimating method.