• Title/Summary/Keyword: cable vibration

Search Result 395, Processing Time 0.044 seconds

Static and free vibration analysis of shallow sagging inclined cables

  • Li, Zhi-Jiang;Li, Peng;He, Zeng;Cao, Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.145-157
    • /
    • 2013
  • Based on link-model, we conducted a static analysis and computation of a three-span suspended cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. Using the link and beam model based on finite element method, we analyzed the vibration modal of three-span suspended cable structure, and compared with the results obtained from ANSYS using link and beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of inclined cables.

Long-term monitoring of super-long stay cables on a cable-stayed bridge

  • Shen, Xiang;Ma, Ru-jin;Ge, Chun-xi;Hu, Xiao-hong
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.357-368
    • /
    • 2018
  • For a long cable-stayed bridge, stay cables are its most important load-carrying components. In this paper, long-term monitoring of super-long stay cables of Sutong Bridge is introduced. A comprehensive data analysis procedure is presented, in which time domain and frequency domain based analyses are carried out. In time domain, the vibration data of several long stay cables are firstly analyzed and the standard deviation of the acceleration of stay cables, and its variation with time are obtained, as well as the relationship between in-plane vibration and out-plane vibration. Meanwhile, some vibrations such as wind and rain induced vibration are detected. Through frequency domain analysis, the basic frequencies of the stay cables are identified. Furthermore, the axial forces and their statistical parameters are acquired. To investigate the vibration deflection, an FFT-based decomposition method is used to get the modal deflection. In the end, the relationship between the vibration amplitude of stay cables and the wind speed is investigated based on correlation analysis. Through the adopted procedure, some structural parameters of the stay cables have been derived, which can be used for evaluating the component performance and corresponding management of stay cables.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

A method to evaluate the frequencies of free transversal vibrations in self-anchored cable-stayed bridges

  • Monaco, Pietro;Fiore, Alessandra
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.125-146
    • /
    • 2005
  • The objective of this paper is setting out, for a cable-stayed bridge with a curtain suspension, a method to determine the modes of vibration of the structure. The system of differential equations governing the vibrations of the bridge, derived by means of a variational formulation in a nonlinear field, is reported in Appendix C. The whole analysis results from the application of Hamilton's principle, using the expressions of potential and kinetic energies and of the virtual work made by viscous damping forces of the various parts of the bridge (Monaco and Fiore 2003). This paper focuses on the equation concerning the transversal motion of the girder of the cable-stayed bridge and in particular on its final form obtained, restrictedly to the linear case, neglecting some quantities affecting the solution in a non-remarkable way. In the hypotheses of normal mode of vibration and of steady-state, we propose the resolution of this equation by a particular method based on a numerical approach. Respecting the boundary conditions, we derive, for each mode of vibration, the corresponding frequency, both natural and damped, the shape-function of the girder axis and the exponential function governing the variability of motion amplitude in time. Finally the results so obtained are compared with those deriving from the dynamic analysis performed by a finite elements calculation program.

FVT Signal Processing for Structural Identification of Cable-stayed Bridge (사장교의 구조식별을 위한 가진실험 데이터분석)

  • 이정휘;김정인;윤자걸
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.923-929
    • /
    • 2004
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neuralnetwork. 7he considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck. and vortical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used for the structural identification using arbitrarily added masses to the bridge.

FVT Signal Processing for Structural Identification of Cable-Stayed Bridge (사장교의 구조식별을 위한 가진실험 데이터분석)

  • 윤자걸;이정휘;김정인
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.619-623
    • /
    • 2003
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neural network. The considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck, and vertical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used fur the structural identification using arbitrarily added masses to the bridge.

  • PDF

Axial Vibration Analysis of Umbilical Cable with Pilot Mining Robot using Sea Test Data (실해역 시험 데이터를 이용한 파일럿 채광로봇 엄빌리컬 케이블의 축진동 해석)

  • Min, Cheon-Hong;Yeu, Tae-Kyeong;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Yoon, Suk-Min;Kim, Jin-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.128-134
    • /
    • 2015
  • Axial vibration analysis is very important for a deep-seabed mining system. In this study, an axial vibration analysis was carried out to estimate the natural frequencies and tensions of the umbilical cable using experimental data obtained from the first pre-pilot mining test. The axial vibrations of the umbilical cable with a pilot mining robot at the bottom end were analytically determined. The range of the added mass coefficients of the pilot mining robot is estimated by comparing the experimental and analytical data. The natural frequencies and maximum tensions are calculated using four estimated added mass coefficients.

Rain-wind induced vibration of inclined stay cables -Part II: Mechanical modeling and parameter characterisation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.485-498
    • /
    • 2003
  • This paper presents a mechanical model of Rain-Wind Induced Vibration (RWIV) of stay cables. It is based on the physical interpretation of the phenomenon as given in Cosentino, et al. (2003, referred as Part I). The model takes into account all the main forces acting on cable, on the upper water rivulet (responsible of the excitation) and the cable-rivulet interaction. It is a simplified (cable cross-sectional and deterministic) representation of the actual (stochastic and three-dimensional) phenomenon. The cable is represented by its cross section and it is subjected to mechanical and aerodynamic (considering the rivulet influence) forces. The rivulet is supposed to oscillate along the cable circumference and it is subjected to inertial and gravity forces, pressure gradients and air-water-cable frictions. The model parameters are calibrated by fitting with experimental results. In order to validate the proposed model and its physical basis, different conditions (wind speed and direction, cable frequency, etc.) have been numerically investigated. The results, which are in very good agreement with the RWIV field observations, confirm the validity of the method and its engineering applicability (to evaluate the RWIV sensitivity of new stays or to retrofit the existing ones). Nevertheless, the practical use of the model probably requires a more accurate calibration of some parameters through new and specifically oriented wind tunnel tests.

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.