• Title/Summary/Keyword: cable stayed structure

Search Result 130, Processing Time 0.024 seconds

Construction Stage Analysis of Hybrid Composite Cable-Stayed Girder Bridge Using Eccentrically Loaded Derrick Crane (편중 가능한 사장교 가설용 데릭 크레인을 이용한 합성형 복합 사장교 시공 단계 해석)

  • Park, Taekwun;Kim, Moon Kyum;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.277-286
    • /
    • 2010
  • Derrick or caterpillar crane is generally used for the long-span/cable-stayed bridge construction by pre-cast segment lifting from over-land or water transportation. The heavy weight of them, however, could make defects on unstable under-construction structure and, furthermore a method of conventional segment transportation is also able to occur additional time and cost. In this study, in order to improve conventional construction method, the newly developed derrick crane is mainly considered. It could be not only eccentrically loadable on constructing girder but having rotatable boom for segment transportation from back-side. A series of construction stage using developed derrick crane is defined and also its numerical analysis is conducted. To reflect load characteristics of developed derrick crane on construction stage analysis, on/out of service load is separately calculated by considering vertical/lateral rotation range of boom and it is loaded on 4 fixed positions of crane. The derrick crane on this study could be time and cost saving solution for cable-stayed bridge construction and also make contributions to construction load reduction in its process.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Numerical studies on the effect of measurement noises on the online parametric identification of a cable-stayed bridge

  • Yang, Yaohua;Huang, Hongwei;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.259-268
    • /
    • 2017
  • System identification of structures is one of the important aspects of structural health monitoring. The accuracy and efficiency of identification results is affected severely by measurement noises, especially when the structure system is large, such as bridge structures, and when online system identification is required. In this paper, the least square estimation (LSE) method is used combined with the substructure approach for identifying structural parameters of a cable-stay bridge with large degree of freedoms online. Numerical analysis is carried out by first dividing the bridge structure into smaller substructures and then estimates the parameters of each substructure online using LSE method. Simulation results demonstrate that the proposed approach is capable of identifying structural parameters, however, the accuracy and efficiency of identification results depend highly on the noise sensitivities of loading region, loading pattern as well as element size.

Estimation of Cable Tension Force by ARX Model-Based Virtual Sensing (ARX모델기반 가상센싱을 통한 사장교 케이블의 장력 추정)

  • Choi, Gahee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.287-293
    • /
    • 2017
  • Sometimes, it is impossible to install a sensor on a certain location of a structure due to the size of a structure or poor surrounding environments. Even if possible, sensors can be frequently malfunctioned or improperly operated due to lack of adequate maintenance. These kind of problems are solved by the virtual sensing methods in various engineering fields. Virtual sensing technology is a technology that can measure data even though there is no physical sensor. It is expected that this technology can be also applied to the construction field effectively. In this study, a virtual sensing technology based on ARX model is proposed. An ARX model is defined by using the simulated data through a structural analysis rather than by actually measured data. The ARX-based virtual sensing model can be applied to estimate unmeasured response using a transfer function that defines the relationship between two point data. In this study, a simulation and experimental study were carried out to examine the proposed virtual sensing method with a laboratory test on a cable-stayed model bridge. Acceleration measured at a girder is transformed to estimate a cable tension through the ARX model-based virtual sensing.

Tensile behavior of new 2,200 MPa and 2,400 MPa strands according to various types of mono anchorage

  • Kim, Jin Kook;Seong, Taek Ryong;Jang, Kyung Pil;Kwon, Seung Hee
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.383-399
    • /
    • 2013
  • High-strength strands are widely used as a key structural element in cable-stayed bridges and prestressed concrete structures. Conventional strands for stay cable and tendons in prestressed concrete structures are ${\phi}$15.7mm coated seven-wire strands and ${\phi}15.2mm$ uncoated seven-wire strands, respectively, but the ultimate strengths of both strands are 1860MPa. The objective of this paper is to investigate the tensile behavior of a newly developed ${\phi}15.7mm$ 2,200 MPa coated strand and a ${\phi}15.2mm$ 2,400 MPa uncoated strand according to various types of mono anchorages and to propose appropriate anchorages for both strands. Finite element analyses were initially performed to find how the geometry of the anchor head affects the interaction among the anchor head, the wedge and the strand and to find how it affects the stress distributions in both parts. Tensile tests for the new strands were carried out with seven different types of mono anchorages. The test results were compared to each other and to the results obtained from the tensile tests with a grip condition. From the analysis and the test results, desirable mono anchorages for the new strands are suggested.

Study on Disaster Prevention System for Long Span Bridge over the Sea (장대해상교량의 방재시스템 구축에 관한 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • Bridge types such as the suspension bridges and the cable stayed bridges maintained by cables present the dangerous possibility of a ship running through the bottom of the bridge. Due to hangers and main cables in the upper structural system, the bridge is also susceptible to disasters. However, these cable bridges are usually used for long span bridges over the sea. This structure is relatively more exposed to disasters, such as wind, hail, and earthquake, than other structures. This structure also has the potential to cause car accidents on account of the poor visibility due to foggy conditions. If a fire breaks out because of a car accident due to wind, a car explosion will likely occur.

Estimation of a tensile force in a cable using dynamic characteristics (진동특성을 이용한 케이블의 인장력 산정)

  • Choi, Sang-Hyun;Nam, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.461-467
    • /
    • 2007
  • Exact application of the tensile force is critical to high-tension members in civil engineering structures, and thus actual tensile forces have often been estimated in field. To date, a few methodologies have been presented utilizing static and/or dynamic responses of tension members. Each of these methods has its disadvantages as well as advantages in its procedures, accuracy, and equipment requirements. In this paper, the feasibility of a sensitivity based methodology, based on the relationship between the natural frequencies and the applied tensile force, developed by the authors, is verified using the measured data from a cable-stayed bridge structure. From the results, it is shown that the proposed method can be utilized in estimating the tensile force in tension member of a real structure.

  • PDF

Semi-active Control of a Seismically Excited Cable-Stared Bridge Considering Dynamic Models of MR Fluid Damper (MR 유체 댐퍼의 동적모델을 고려한 사장교의 반(半)능동제어)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, B.F.,Jr;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control-structure interaction. This benchmark problem focuses on a cable-stayed bridge in Cope Girardeau, Missouri, USA, for which construction is expected to be completed in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi River. In this paper, magnetorheological(MR) fluid dampers are proposed as the supplemental damping devices, and a clipped-optimal control algorithm is employed. Several types of dynamic models for MR fluid dampers, such as a Bingham model, a Bouc-Wen model, and a modified Bouc-Wen model, are considered, which are obtained from data based on experimental results for full-scale dampers. Because the MR fluid damper is a controllable energy-dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.

Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes (붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가)

  • Park, Mi-Yun;Cho, Hyo-Nam;Cho, Taejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.647-657
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Cable Stayed Bridge, which is Prestressed Concrete Bridge consisted of cable and plate girders, based on the method of Working Stress Design and Strength Design. Component reliabilities of cables and girders have been evaluated using the response surface of the design variables at the selected critical sections based on the maximum shear, positive and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to obtain through Monte-Carlo Simulations. or through First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system consisting of cables and plate girder is changed into series connection system and the result of system reliability of total structure is presented. As a system reliability, the upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method, which calculates upper and lower bound failure probabilities.

3-Dimensional FE Analysis of Construction Stages of The Cable-stayed Bridge with Steel-box Girder (강박스 사장교의 시공단계를 고려한 3D 상세 유한요소 해석)

  • Lee Tae-Yeol;Kim Young-Hoon;Shin Hyun-Yang;Kim Jae-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.249-256
    • /
    • 2005
  • Rigorous FE(Finite Element) analyses of the cable-stayed bridge with steel-box girder, the main construction method of which is FCM (Free Cantilever Method), are presented in this paper. The analysis and the checking of design for a derrick crane under several loading conditions are performed using the software MIDAS/Civil and the beam elements are used to model the main structure. Among all the construction stages, special construction stages are chosen and considered to ensure the safety of segments of box girder The stress analysis for lifting of a segment of box girder is performed using the software SAP2000 and the shell elements of which having 6 DOF(Degrees Of Freedom) per nodes are successfully used to model the segment of box girder for the purpose of capturing the detailed behaviors on the folded-plates in the segment. Finally, concluding remarks are given to improve a design of the derrick crane and the segment based on the results from this study.

  • PDF