• Title/Summary/Keyword: cable restrainer

Search Result 4, Processing Time 0.018 seconds

Effects of Restrainer upon Bridge Motions under Seismic Excitations (지진하중을 받는 교량시스템에서의 Restrainer 보강효과분석)

  • 김상효;원정훈;마호성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • 지진하중을 받는 다경간 단순형교의 낙교방지대책으로 적용되는 cable restrainer를 적절하게 설계하기 위해서는 restrainer의 보강효과에 대한 분석이 우선적으로 이루어져야한다. 본 연구에서는 단순지지 다경간 교량시스템을 중심으로 restrainer로 보강된 교량의 보강효과와 다양한 교량의 영향 요소를 고려할 수 있는 단순화된 해석모형을 개발하였으며, 이를 바탕으로 대상교량의 인접 진동계간의 상대거리, 충돌력, 하부교각으로 전달되는 전단역과 휨모멘트의 변화 등의 동적거동특성을 조사하여 restrainer의 보강효과를 분석하였다. 또한, restrainer의 여유길이 변화, 강성변화, 그리고 restrainer 길이변화에 따른 응답특성을 분석하였다.

  • PDF

Seismic Behavior Analysis of the Bridge Retrofitted by Restrainer (Restrainer로 보강된 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;원정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.289-296
    • /
    • 2000
  • Dynamic responses of a bridge retrofitted with cable restrainers are examined under seismic excitations. A simplified and idealized mechanical model is developed to analyze the effects of the restrainers, which can consider the plastic behavior as well as the fracture of the cable. Using the proposed model, the effects of the stiffness and the clearance length of the restrainer upon the global bridge seismic behaviors are estimated. The changes of pounding forces, shear forces, and bending moments due to the application of restrainers are also investigated. The main effect of restrainers upon global bridge motions is found to reduce the relative distances between adjacent vibrations units. It is also found that the relative distances are decreased as the clearance length of the restrainer decreases and the stiffness of restrainer increases.

  • PDF

Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices (저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답)

  • Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.49-59
    • /
    • 2004
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that iead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges (다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교)

  • Choi, Eun Soo;Kim, Lee Hyeon;Park, Joo Nam;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.587-597
    • /
    • 2007
  • Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.