• Title/Summary/Keyword: cable reduction method

Search Result 60, Processing Time 0.024 seconds

Analysis of Sheath Circulating Current in Underground Transmission Power Cables according to Unbalanced Factor (불평형 요소 변화에 따른 지중 송전선로의 시스순환전류 분석)

  • Choi, Soo-Hyun;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.294-295
    • /
    • 2015
  • Many unbalanced factors of underground transmission power cable, such as burying types and the length difference of the cable between each minor section, etc will cause the impedance unbalance and excessive circulating current between cables. So this paper presents the analysis of sheath circulating current in accordance with the distance between the center conductors and phase arrangement. ground resistance value changes on 154kV transmission system. Based on these simulation results, this paper will contribute to the reduction method of sheath circulation current.

  • PDF

Anormal Dielectric and Insulation Properties of Semiconductor/XLPE (반도전층/XLPE 의 불규칙한 유전 및 절연 특성)

  • Lee, Jong-Chan;Kim, Kwang-Soo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.53-57
    • /
    • 2002
  • Reduction of insulation thickness would be beneficial not only for increasing the cable length but would also improve its thermal performance. An interfacial diffusion method was devised to reduce insulation thickness by improving the interfacial properties of XLPE cable insulation. In this paper, to evaluate superficially the interface properties between XLPE insulation and semiconducting layer, the dielectric and insulation properties of tan${\delta}$ and volume resistance were measured with temperature dependence. Above the results, dielectirc and insulation properties with semiconductor/XLPE were more anormal than its bulk caused by the interfacial properties.

  • PDF

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

A method of vibration reduction for "Godet Roller" in the spinning system (방사설비 시스템 중 "Godet Roller 부"에 대한 진동저감 방법)

  • Park, Young-Su;Park, Se-Hong;Kim, Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.82-87
    • /
    • 2012
  • Research and development of the spinning system which become bigger, faster and more detailed has been making progress continuously due to the increasing use of yarn which is considered as raw material to make industrial goods such as tire cord, air bag, filter, seatbelt and fiber-optic cable along with a remarkable growth of industry. In this paper, the desirable procedure and design requirements concerning a method of vibration reduction for "Godet Roller" considered as the main source of high vibration in the spinning system were suggested, and then verified those by analysis and actual test.

  • PDF

Switching Surge Analysis of Underground Transmission Systems (지중송전시스템의 스위칭서지 해석)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Jang, Sung-Hwan;Kang, Ji-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.481-483
    • /
    • 2002
  • In this paper, for continuously changed closing time of circuit breakers, switching overvoltage on 345kV underground transmission systems are variously analyzed using EMTP with statistical analysis method. And, switching overvoltage and closing surge occurred in conductors at sending and receiving end and metal sheath with variation of cable length are analyzed, and the reduction effects for switching overvoltage considered preinsertion resistance of circuit breakers are examined.

  • PDF

Efficiency Estimation of Toxicity Free Eire Resistance Cable

  • Yoon, Hun-Ju;Hon, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.34-38
    • /
    • 2002
  • In this paper, efficiency estimation of toxicity fee fire resistance cable experiments was measured smoke density of toxicity free fire resistance polyolefin insulation material and electric field dependence of tree shape in low density polyethylene (LDPE). One of the most serious causes of failure in high-voltage cables, can be an electrical discharge across an internal gab or void in the insulating material. Treeing due to partial discharge is one of the main causes of breakdown in the insulating materials and reduction of the insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation and research of the fire resistance character has become important. First, we have studied on electric field dependence of tree shape in LDPE about treeing phenomena occurring on the high electrical field. Second, the measurement method is the attenuation quantity of irradiation by smoke accumulating with in a closed chamber due to non-flaming heat decomposition and flaming combustion. A main cause of fire-growth and generating toxic gas when, it bums, should be dealt with great care in life. safety design. The fire gases were occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC, which has high content of carbon in chemical compound.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Construction Stage Analysis of Hybrid Composite Cable-Stayed Girder Bridge Using Eccentrically Loaded Derrick Crane (편중 가능한 사장교 가설용 데릭 크레인을 이용한 합성형 복합 사장교 시공 단계 해석)

  • Park, Taekwun;Kim, Moon Kyum;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.277-286
    • /
    • 2010
  • Derrick or caterpillar crane is generally used for the long-span/cable-stayed bridge construction by pre-cast segment lifting from over-land or water transportation. The heavy weight of them, however, could make defects on unstable under-construction structure and, furthermore a method of conventional segment transportation is also able to occur additional time and cost. In this study, in order to improve conventional construction method, the newly developed derrick crane is mainly considered. It could be not only eccentrically loadable on constructing girder but having rotatable boom for segment transportation from back-side. A series of construction stage using developed derrick crane is defined and also its numerical analysis is conducted. To reflect load characteristics of developed derrick crane on construction stage analysis, on/out of service load is separately calculated by considering vertical/lateral rotation range of boom and it is loaded on 4 fixed positions of crane. The derrick crane on this study could be time and cost saving solution for cable-stayed bridge construction and also make contributions to construction load reduction in its process.

Determination of flutter derivatives by stochastic subspace identification technique

  • Qin, Xian-Rong;Gu, Ming
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2004
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.