• Title/Summary/Keyword: cable failure analysis

Search Result 89, Processing Time 0.023 seconds

Probabilistic Safety Analysis of Cable-Stayed Bridge Using Measured Data (계측데이터를 이용한 사장교의 확률적 안전도 분석)

  • Yoon, Man-Geun;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • In this paper, through the study and consideration of the recently prominent monitoring of cable stayed-bridge, practical but reasonable suggested for the evaluation of the probabilistic safety of the bridges using probable measured data from monitoring measurement system. It is shown in the paper that the live load effects can be evaluated using measured data of cable-stayed bridge and this the realistic probabilistic safety of the cable-stayed bridge could be assessed in term of element reliability and system reliability. As a practical method for the evalution of the system reliability of system cable-stayed bridges partial ETA method is uesd, which can find the critical failure path including combined failure modes of cable, deck and pylon. Compared with the conventional safety analysis method, the propsed approach may be considered as the practical method that shows the considerably actual and reasonable results the system redundancy of the structure.

The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Subjected to Earthquake Load (지진하중을 받는 사장교의 확률유한요소해석 및 신뢰성해석)

  • Shin, Jae-Chul;Han, Sung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.29-42
    • /
    • 2005
  • Considering the effect by uncertainty in the structures, it is reasonable that the safety examination has to be performed by using method of reliability evaluation. Therefore, in this study, program is developed which can perform the reliability analysis or the dynamic response analysis more efficiently by formularizing the stochastic finite element analysis suitable for the existing reliability analysis about the cable stayed bridge suffering the seismic loads. Based on this program, the characteristic of dynamic responses is analyzed quantitatively by examining the average, the standard deviation and the coefficient of variance about the displacement, the resistance and the tension of cable according to the random variables. and the safety of cable stayed bridge is evaluated by examining of reliability index and failure probability

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

A Consideration on the Causes of 22.9kV Cable Terminal Burning Accident (22.9kV 케이블 단말 부위 소손 사고의 원인에 관한 고찰)

  • Shim, Hun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • The main cause of cable accidents is the accelerated deterioration of the cable itself or internal and external electrical, mechanical, chemical, thermal, moisture intrusion, etc., which reduces insulation performance and causes insulation breakdown, leading to cable accidents. Insulation deterioration can occur even when there is no change in the appearance of the cable, so there is a difficulty in preventing cable accidents due to insulation deterioration. Since cable accidents can occur in areas with poor insulation due to the effects of overvoltage and overcurrent, it is necessary to comprehensively analyze transformers and circuit breakers, and ground faults caused by phase-to-phase imbalance. Ground fault accidents due to insulation breakdown of cables can occur due to defects in the cable itself and poor cable construction, as well as operational influences, arcs during operation of electrical equipment (switchers, circuit breakers, etc.). analysis is needed. This study intends to examine the causes of cable accidents through analysis of cable accidents that occurred in a manufacturing factory.

Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes (붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가)

  • Park, Mi-Yun;Cho, Hyo-Nam;Cho, Taejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.647-657
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Cable Stayed Bridge, which is Prestressed Concrete Bridge consisted of cable and plate girders, based on the method of Working Stress Design and Strength Design. Component reliabilities of cables and girders have been evaluated using the response surface of the design variables at the selected critical sections based on the maximum shear, positive and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to obtain through Monte-Carlo Simulations. or through First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system consisting of cables and plate girder is changed into series connection system and the result of system reliability of total structure is presented. As a system reliability, the upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method, which calculates upper and lower bound failure probabilities.

Analysis of the Characteristics of Partial discharge in a Cable splice using a Ultrasonic sensor (초음파 센서를 이용한 케이블 접속재내 부분방전 특성분석)

  • 신동석;이동준;류성식;곽희로
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.160-162
    • /
    • 2000
  • This paper describes the study on the basic characteristics of discharge generated in cable splices using ultrasonic measurement method. Two kinds of defect which might be existed in a real cable splice were simulated. One is surface discharge moisture and metallic alien substances and the other is partial discharge by metallic particle. As a result, there were some differences in the characteristics of ultrasonic signals according to each defect. Therefore, it was found that is could be possible to protect the failure in cable splices in advance by analyzing the ultrasonic signals coming from the cable splice due to partial discharge.

  • PDF

A study on analysis of interfacial breakdown properties with variable temperalure in straight cable Joint modeling EPGXY/EPOM interface (온도에 따른 케이블 직선 접속재 모델링 EPOXY/EPDM 계면의 파괴 특성에 관한 연구)

  • 배덕권;정인재;김상걸;정일형;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.532-535
    • /
    • 1999
  • In power cable joints, the interfaces of two different dielectric materials are inevitable. In addition, the interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. We chose epoxy/EPDM interface, one of the interface in cable joints, and investigate dielectric interfacial breakdown phenomenon. First, design specimen with Flux 2D. Second, find interface condition which has high dielectric strength. Third, investigate interfacial breakdown properties with variable temperature.

  • PDF

The Study of Accident Cases Verification and Construction of It's Cause Diagnosis System of Power Cable Accident (케이블 사고 자가원인 진단시스템 구축 및 사고사례 검증에 관한 연구)

  • Kim, Young-Seok;Shong, Kil-Mok;Kim, Sun-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.91-97
    • /
    • 2009
  • We have constructed the it's cause diagnosis system of power cable by Failure Mode Effect Analysis(FMEA) method because we have to cause analysis when the cable accident happened. This system was composed of data input of accident condition, presentation of the shape through pictograph and accident probability by FMEA method. According to each selection, the accident cause comments are showed by the accident occurrence possibility. Also, the verification of the it's diagnosis system through the cause analysis of the cable accident cases, the system agreed well with results that analyzed actual state.

System Reliability-Based Safety and Capacity Evaluation of Cable-Stayed Bridges (쳬계신뢰성에 기초한 사장교의 안전도 및 내하력 평가)

  • 조효남;이승재;임종권;김보헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.105-112
    • /
    • 1996
  • A practical approach for the assessment of system reliability-based safety and load carring capacity under vehicle traffics is proposed for the realistic evaluation of safety and rating of cable-stayed bridges. A partial event tree analysis model incorporating major critical failure paths is suggested as a practical tool for the system reliability analysis and system reliability-based capacity rating. The proposed approach for the system reliability analysis and system reliability-based rating is applied to the safety assessment of the Jindo Bridge which is one of two existing cable-stayed bridges in Korea. The results of analyses at the system level based on the system reliability are compared with those at the element level.

  • PDF

A Safety Evaluation of Cable Tunnel Exposed to Fire (화재피해 통신구의 안전진단)

  • 김지상;김형우;김효환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.221-226
    • /
    • 1994
  • A safety evaluation of cable tunnel, which is a concrete box structure with telecommunication facilities in it, exposed to fire is given. The immediate field observation was performed to find out any sign of sudden structural failure. In some region, where the fire intensity was heavy, the spalling of concrete cover in upper slab occurred. Next, more careful investigation was done with proper non-desturctive testing methods and structural analysis taking into account the changes in material properties due to fire. It seems that there is no severe damage on concrete, reinforcements and over all structural system.

  • PDF