• Title/Summary/Keyword: cabinet structure

Search Result 43, Processing Time 0.025 seconds

comparative Study of Analytical Modal Properties of Instrumentation Cabinet of Nuclear Power Plant (모델링 방법의 차이에 따른 원전계측캐비넷의 동특성 해석 결과 비교분석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.186-192
    • /
    • 1999
  • Safety-related equipments of nuclear power plant must be seismically qualified to demonstrate their ability to function as required during and/or after the earthquake, The seismic qualification is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However even for relatively complex equipments analysis method is occasionally used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. Usually the structural elements and doors of the cabinet are loosely interconnected with small-size bolts or spot welding. Therefore cabinet-type equipment usually has high and complex nonlinear properties which are not easily idealized by simple practical modeling techniques. in this paper with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the -art modeling techniques: lumped mass model frame model and FEM modal. Form the study results it has been found that modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However it needs additional modeling techniques to get reasonable results up to nonlinear range.

  • PDF

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.

A Study on the Enhancement of Cooling Efficiency for the Cabinet of Automatic Controller in the Interior of Industrial Building (산업용 건축물 내 자동제어반의 냉각효율 향상에 관한 연구)

  • Kim, Soon-Ho;Park, Hyun-Jung
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.79-87
    • /
    • 2013
  • The improvement of cooling efficiency for the cabinet of automatic controller is the most efficient method of it's application. Therefore, this study has been analyzed and investigated the improvement of cooling efficiency and reduction of energy for the cabinet of automatic controller, respectively. So this study was conducted to enhancement of cooling efficiency for the cabinet of automatic controller by making a structure which produces difference of air pressures in the entrance tube of external air. And the structure has capacity of the pyrogen source (PTC elements) to make temperature range from $145^{\circ}C$ to $155^{\circ}C$. Consequently, temperatures of the upper, the lower in the interior of the cabinet of automatic controller and the exhaust part were revealed $28.57^{\circ}C$, $23.38^{\circ}C$and $36.14^{\circ}C$(average temperature of the exhaust part in case of existing method : $45^{\circ}C$) in target test of this study, respectively. It was found that the cabinet of the automatic controller has better cooling ability than the cabinet of automatic controller by using an existing method.

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

Analysis of the Structural Robustness of Cabinet Structure Equipped with Military Vehicles (군용 차량 탑재 캐비닛 구조물의 구조건전성 분석)

  • Son, Dong-Hun;Kang, Kwang-Hee;Choi, Ji-Ho;Park, Do-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.273-276
    • /
    • 2014
  • The development of a vehicle-mounted radar to detect the location of enemy artillery is mainly mounted during operation to the mobility of the equipment and efficiency of utilization range. It is equipped with an electronic device responsible for the operation of the radar system. Electronic equipments is performed functionality imparted without an error-specific in spite of disturbances such as vibration / shock caused by vehicle movement. Therefore, vibration / shock resistance is held to prevent damaging from vibration / shock generated from the outside environment during operation. In addition, a standardized and specified cabinet structure equipped with electronic equipment is placed in shelter to ensure additional safety for vibration / shock. In this study, it is evaluated by analytical method with vibration / shock resistance of the cabinet structures for ensuring structural safety factor is applied to the aluminum. It is verified the reliability of the structure and structural dynamics to verify by calculated natural frequencies adding the weight of the cabinet structure and the structural displacement and stress results confirmed with vibration / shock caused by the vehicle movement.

  • PDF

Seismic Qualification of Plant Protection System Cabinet for Nuclear Power Plant (원자력발전소 보호시스템 캐비넷의 내진검증)

  • 정명조;박근배;황원걸
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.148-155
    • /
    • 1992
  • A method to verify seismic qualification of the plant protection system cabinet for a nuclear power plant is presented. A finite element model of the cabinet is developed and correlated to the dynamic properties observed during in-situ vibration test of the actual structure. The results of the modal analysis provide insight into the fundamental dynamic properties of the structure. Techniques for verifying structural integrity and operability are exemplified by summarizing response spectrum and time history analyses of the structure.

  • PDF

Comparison of "The Cabinet of Dr. Caligari" and Deconstructive Architecture in the Expressionist Characteristics (칼리가리 박사의 밀실과 해체주의 건축의 표현주의 특성 비교)

  • Choi, Hyo-Sik
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.1
    • /
    • pp.35-46
    • /
    • 2016
  • The purpose of this study was to identify the characteristics of expressionism in the space of deconstructive architecture by comparing the spaces of "The Cabinet of Dr. Caligari" video with the expressionist characteristics of film narrative structure and expressionist architecture and making an expansion based on the results. The findings were as follows: first, the "The Cabinet of Dr. Caligari" is divided into two set spaces: one has the perspective representation distorted in the viewpoint of a mad person applied to it, and the other reflects the viewpoint of a normal person from medieval paintings with no perspective. Second, the expressionist buildings did not reflect the expressionist characteristics in the interior spaces as fully as in the exterior ones. Third, the incomplete combination of Signifiant and $Signifi{\acute{e}}$, which were the theoretical basis of deconstructive architecture, showed a tendency of binary opposition like the double narrative structure of "The Cabinet of Dr. Caligari." Fourth, deconstructive architecture seems to embody the exterior form and interior space of "The Cabinet of Dr. Caligari" and its set spaces in the phenomenal aspect but exhibits its limitations with the realization of dynamics, one of the characteristics of expressionism. Finally, the Seattle Public Library presents the best embodiment of expressionist characteristics found in the set spaces of "The Cabinet of Dr. Caligari" while seeking after the combination of horizontal and vertical paths of action through the spiral ramps and inclined slabs.

Seismic Retrofitting of Cabinet Structures in Nuclear Power Plant (원자력 발전소 캐비닛구조물의 내진보강)

  • 이계희;김재민;김상윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper presents the methodologies for seismic retrofitting of cabinet equipment which can be employed to resolve the USI A-46 problem related to seismic qualification of old nuclear power plant. To obtain accurate dynamic characteristics of a cabinet structure, three types of structural modeling are introduced and the their free vibration modes are compared. Three types of seismic retrofitting scenarios, such as 1) the installation of bracing, 2) installation of damper, 3) installation of tuned mass damper(TMD), are established and evaluated for the decrease of ICRS(In Cabinet Reponse Spectrum). In the cases of 1) & 2), since the retrofitted structures show larger ICRS than that of the original structure, the careful considerations are need in the application of these methods. Though the installation of TMD shows the best retrofitting result, the construction of analysis model that indicate the accurate vibration modes of real structure is estimated the essential step of this retrofitting method.

Seismic Qualification of Plant Protection System Cabinet for Nuclear Power Plant (원자력발전소 보호시스템 캐비넷의 내진검증)

  • 정명조;황원걸
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 1993
  • A method to verify seismic qualification of the plant protection system cabinet for a nuclear power plant is presented. A finite element model of the cabinet is developed and the dynamic characteristics are obtained. The results of the modal analysis provide insight into the fundamental dynamic properties of the structure, which correspond to the frequency of the peak values of the input seismic spectrum. It necessitates the design modification of the reference cabinet. Techniques for verifying structural integrity and operability are exemplified by summarizing response spectrum and time history analyses of the structure.

  • PDF

The optimum damper retrofit of cabinet structures by genetic (유전자알고리즘을 이용한 캐비닛 구조의 최적감쇠보강)

  • 이계희;최익창;하동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.379-386
    • /
    • 2004
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contained class 1 relays were studies in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed to the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by μ-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained in form of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The fitness function of the optimum procedure was constructed based on the ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness fur adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the damping exponents are proper.

  • PDF