• 제목/요약/키워드: cAMP-dependent protein kinase(PKA)

검색결과 35건 처리시간 0.021초

Dehydroglyasperin D Suppresses Melanin Synthesis through MITF Degradation in Melanocytes

  • Baek, Eun Ji;Ha, Yu-Bin;Kim, Ji Hye;Lee, Ki Won;Lim, Soon Sung;Kang, Nam Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권8호
    • /
    • pp.982-988
    • /
    • 2022
  • Licorice (Glycyrrhiza) has been used as preventive and therapeutic material for hyperpigmentation disorders. Previously, we isolated noble compounds including dehydroglyasperin C (DGC), dehydroglyasperin D (DGD) and isoangustone A (IAA) from licorice hexane/ethanol extracts. However, their anti-melanogenic effects and underlying molecular mechanisms are unknown. The present study compared effects of DGC, DGD and IAA on pigmentation in melan-a melanocytes and human epidermal melanocytes (HEMn). DGD exerted the most excellent anti-melanogenic effect, followed by DGC and IAA at non-cytotoxic concentrations. In addition, DGD significantly inhibited tyrosinase activity in vitro cell-free system and cell system. Western blot result showed that DGD decreased expression of microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) in melan-a cells and HEMn cells. DGD induced phosphorylation of MITF, ERK and Akt signal pathway promoting MITF degradation system. However, DGD did not influence p38 and cAMP-dependent protein kinase (PKA)/CREB signal pathway in melan-a cells. These result indicated that DGD inhibited melanogenesis not only direct regulation of tyrosinase but also modulating intracellular signaling related with MITF level. Collectively, these results suggested a protective role for DGD against melanogenesis.

Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • 제13권3호
    • /
    • pp.205-213
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Myocardial infarction (MI) is caused by extensive myocardial damage attributed to the occlusion of coronary arteries. Our previous study in a rat model of ischemia/reperfusion (I/R) demonstrated that administration of arabinoxylan (AX), comprising arabinose and xylose, protects against myocardial injury. In this study, we undertook to investigate whether psyllium seed husk (PSH), a safe dietary fiber containing a high level of AX (> 50%), also imparts protection against myocardial injury in the same rat model. MATERIALS/METHODS: Rats were fed diets supplemented with PSH (1, 10, or 100 mg/kg/d) for 3 d. The rats were then subjected to 30 min ischemia through ligation of the left anterior descending coronary artery, followed by 3 h reperfusion through release of the ligation. The hearts were harvested and cut into four slices. To assess infarct size (IS), an index representing heart damage, the slices were stained with 2,3,5-triphenyltetrazolium chloride (TTC). To elucidate underlying mechanisms, Western blotting was performed for the slices. RESULTS: Supplementation with 10 or 100 mg/kg/d of PSH significantly reduces the IS. PSH supplementation (100 mg/kg/d) tends to reduce caspase-3 generation and increase BCL-2/BAX ratio. PSH supplementation also upregulates the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and its target genes including antioxidant enzymes such as glutathione S-transferase mu 2 (GSTM2) and superoxide dismutase 2 (SOD2). PSH supplementation upregulates some sirtuins ($NAD^+$-dependent deacetylases) including SIRT5 (a mitochondrial sirtuin) and SIRT6 and SIRT7 (nuclear sirtuins). Finally, PSH supplementation upregulates the expression of protein kinase A (PKA), and increases phosphorylated cAMP response element-binding protein (CREB) (pCREB), a target protein of PKA. CONCLUSIONS: The results from this study indicate that PSH consumption reduces myocardial I/R injury in rats by inhibiting the apoptotic cascades through modulation of gene expression of several genes located upstream of apoptosis. Therefore, we believe that PSH can be developed as a functional food that would be beneficial in the prevention of MI.

Modulation of Presynaptic GABA Release by Oxidative Stress in Mechanically-isolated Rat Cerebral Cortical Neurons

  • Hahm, Eu-Teum;Seo, Jung-Woo;Hur, Jin-Young;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.127-132
    • /
    • 2010
  • Reactive oxygen species (ROS), which include hydrogen peroxide ($H_2O_2$), the superoxide anion (${O_2}^-{\cdot}$), and the hydroxyl radical ($OH{\cdot}$), are generated as by-products of oxidative metabolism in cells. The cerebral cortex has been found to be particularly vulnerable to production of ROS associated with conditions such as ischemia-reperfusion, Parkinson's disease, and aging. To investigate the effect of ROS on inhibitory GABAergic synaptic transmission, we examined the electrophysiological mechanisms of the modulatory effect of $H_2O_2$ on GABAergic miniature inhibitory postsynaptic current (mIPSCs) in mechanically isolated rat cerebral cortical neurons retaining intact synaptic boutons. The membrane potential was voltage-clamped at -60 mV and mIPSCs were recorded and analyzed. Superfusion of 1-mM $H_2O_2$ gradually potentiated mIPSCs. This potentiating effect of $H_2O_2$ was blocked by the pretreatment with either 10,000-unit/mL catalase or $300-{\mu}M$ N-acetyl-cysteine. The potentiating effect of $H_2O_2$ was occluded by an adenylate cyclase activator, forskolin, and was blocked by a protein kinase A inhibitor, N -(2-[p-bromocinnamylamino] ethyl)-5-isoquinolinesulfonamide hydrochloride. This study indicates that oxidative stress may potentiate presynaptic GABA release through the mechanism of cAMP-dependent protein kinase A (PKA)-dependent pathways, which may result in the inhibition of the cerebral cortex neuronal activity.

추출용매에 따른 레몬밤 추출물의 중성지방 조절 효능 검증 (Verification of the Effect of Lemon Balm Extract on Triglyceride Control According to the Extraction Solvent)

  • 김지연;김경곤;이혜림;김대중;김태우
    • 한국자원식물학회지
    • /
    • 제35권2호
    • /
    • pp.372-379
    • /
    • 2022
  • 본 연구는 추출용매에 따른 레몬밤 추출물의 중성지방 조절에 대한 논문으로 3T3-L1 지방전구세포를 이용해 지방세포로 분화유도한 뒤 lipid accumulation, triglyceride contents, PKA, HSL, perilipin, ATGL 및 CGI-58 단백질 발현을 확인하였다. 실험결과 네가지 조건의 레몬밤 추출물 중 물 추출 조건인 MOW100 추출물만 lipid accumulation과 triglyceride contents의 유의적 억제 효능을 나타내었으며, MOE70, MOE50, MOE50 추출물은 lipid accumulation과 triglyceride contents의 감소 효과가 없거나 유의적 차이를 나타내지 않는 것이 확인되었다. MOW100 추출물의 세포내 지방 축적 억제는 지방세포 내 lipolysis를 조절하는 효소 조절을 통해 나타난 결과로 판단된다. 따라서 레몬밤 물 추출물은 cAMP-PKA를 활성화시키고, lipolysis를 조절하는 효소의 상승작용을 통해 세포내 중성지방을 조절함으로써 혈중 중성지방을 개선하는 후보소재로의 사용이 가능할 것으로 사료된다.

Biodistribution of [S-35] Labeled Antisense Oligodeoxynucleotides Increased Tumor Targeting With Microsphere Coinjection

  • Choe, Jae-Gol;Park, Gil-Hong;Claudio Nastruzzi;Yoon S. Cho-Chung;Kim, Meyoung-Kon
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권2호
    • /
    • pp.65-69
    • /
    • 2002
  • To elucidate the effect of microsphere coinjection on the administration of oligodeoxynucleotides (ODN), we have investigated biodistribution of [S-35]-labeled antisense ODN targeted to cAMP-dependent protein kinase (PKA) RI-$\alpha$ subunit in nude mice xenografted with WiDr (human colon cancer, ATCC CCL218). The strategy of using microsphere has been proposed for cancer treatment as a carrier of therapeutic ODN so that it could offer an advantage with respect to maintaining constant ODN levels in blood and obtaining higher therapeutic ODN concentration at tumor sites. Comparative biodistribution studies were performed in nude mice (female, 20 g of body weight, n = 4-6) xenografted with WiDr cancer cells, when 0.1 $\mu$Ci (specific activity, 2.94 mCi/$\mu$mole) of [S-35]-labeled RI-$\alpha$ antisense ODN was injected alone or with microsphere (PLG-18, polylactic copolymer with cationic surfactant DDAB18). Peak tumor uptake of [S-35]-labeled ODN was significantly increased from 17.7% (at 6 h) of injected dose per gram of tissue (ID/g) to 42.5% (at 24 h) ID/g when microsphere was coinjected with ODN. The different biodistribution in the kidney accumulation (e.g., 100.2% ID/g for ODN alone and 54.9%/ID/g for microshpere coinjection) may contribute to higher blood concentration (e.g., 21.5%ID/$m\ell$ for ODN alone and 37.5%ID/$m\ell$ for microsphere coinjection) of radiolabeled ODN. Of importance is the fact that the whole body retention of radioactivity increased with microsphere coinjection from 50.8%ID/g to 68.0%ID/g after 24-h of injection. This decreased kidney accumulation and increased whole body retention of [S-35]-labeled ODN resulted in a significant improvement of ODN targeting to the tumor site. In conclusion, the coinjection of microsphere appears to be an important carrier system in vehiculation of antisense oligonucleotide to the tumor tissue in vivo.

  • PDF