• Title/Summary/Keyword: c9,t11-CLA

Search Result 44, Processing Time 0.022 seconds

Effect of Cassava Hay and Rice Bran Oil Supplementation on Rumen Fermentation, Milk Yield and Milk Composition in Lactating Dairy Cows

  • Lunsin, R.;Wanapat, Metha;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1364-1373
    • /
    • 2012
  • Four crossbred (75% Holstein Friesian) lactating dairy cows, with an average live weight of $418{\pm}5$ kg and $36{\pm}10$ d in milk were randomly assigned according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design to evaluate the effects of cassava hay (CH) and rice bran oil (RBO) on feed intake, nutrient digestibility, ruminal fermentation, milk yield, and milk composition. Factor A was non-supplementation or supplementation with CH in the concentrate. Factor B was supplementation with RBO at 0% or 4% in the concentrate mixture. The four dietary treatments were (T1) control (Concentrate with non-CH plus 0% RBO; C), (T2) Concentrate with CH plus 0% RBO (CH), (T3) Concentrate with non-CH plus 4% RBO (RBO), and (T4) Concentrate with CH plus 4% RBO (CHRBO). The cows were offered concentrate, at a ratio of concentrate to milk production of 1:2, and urea-lime treated rice straw was fed ad libitum. Urea-lime treated rice straw involved 2.5 g urea and 2.5 g $Ca(OH)_2$ (purchased as hydrated lime) in 100 ml water, the relevant volume of solution was sprayed onto a 100 g air-dry (91% DM) straw, and then covering the stack with a plastic sheet for a minimum of 10 d before feeding directly to animals. The CH based concentrate resulted in significantly higher roughage intake and total DM intake expressed as a percentage of BW (p<0.05). Ruminal pH, $NH_3$-N, BUN and total VFA did not differ among treatments, while RBO supplementation increased propionate, but decreased acetate concentration (p<0.05). Furthermore, the population of total ruminal bacteria was significantly lower on the RBO diet (p<0.05). In contrast, the total ruminal bacteria and cellulolytic bacteria on the CH diet were higher than on the other treatments. Supplementation with CH increased (p<0.05) F. succinogens and R. flavefaciens populations, whereas the populations of B. fibrisolvens and M. elsdenii were increased on the RBO diet. In addition, supplementation with CH and RBO had no effect on milk production and composition in dairy cows, while fatty acid composition of milk was influenced by RBO supplementation, and resulted in significantly lower (p<0.05) concentrations of both short-chain and medium-chain FA, and increased (p<0.05) the proportion of long-chain FA in milk fat, as well as significantly increased cis-9, trans-11 CLA and total CLA. In conclusion, RBO or CH exhibited specific effects on DMI, rumen fermentation, microbial population, milk yield and composition in lactating dairy cows, which were not interactions between CH and RBO in the diets. Feeding lactating dairy cows with RBO could improve fatty acid in milk fat by increasing cis-9, trans-11 CLA.

Lipid Sources with Different Fatty Acid Profile Alters the Fatty Acid Profile and Quality of Beef from Confined Nellore Steers

  • Fiorentini, Giovani;Lage, Josiane F.;Carvalho, Isabela P.C.;Messana, Juliana D.;Canesin, Roberta. C.;Reis, Ricardo A.;Berchielli, Telma T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.976-986
    • /
    • 2015
  • The present study was conducted to determine the effects of lipid sources with different fatty acids profile on meat fatty acids profile and beef quality traits of Nellore. A total of 45 Nellore animals with an average initial body weight of $419{\pm}11kg$ (at $15{\pm}2mo$) were distributed in a completely randomized design consisting of 5 treatments and 9 replicates. The roughage feed was maize silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF), and soybean grains (SG). No effects of lipid sources were observed (p>0.05) on beef color, pH, water-holding capacity, and sarcomere length. Beef from cattle fed PO had greater shear-force values (p<0.05) compared to beef from cattle fed WF. Deposition of main unsaturated fatty acids (oleic, linoleic, and linolenic) was greater in treatments WF, SG, and LO, respectively, while the values of conjugated linoleic acid (CLA) were greater when animals were fed LO. The inclusion of LO in the diet enhances the concentration of CLA in longissimus muscle and subcutaneous fat besides improving the atherogenicity index and elongase activity. As such, LO can be used with the aim to improve the quality of beef from confined Nellore cattle. Conversely, the use of PO is not recommended since it may increase the concentration of undesirable unsaturated fatty acids in muscle and subcutaneous fat, shear-force and the atherogenicity index.

Fatty Acid Compositions and Physicochemical Properties of Feta Cheese Made from Bovine Milk (우유로 제조한 휘타치즈의 지방산 조성과 물리화학적 특성)

  • 박승용
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.611-622
    • /
    • 2006
  • Fatty acid compositions and physicochemical properties of feta cheese made from bovine milk were studied. Nutritional compositions of feta cheese were fat 22.79%, protein 10.57% with moisture content of 59.87%. The log cfu/g of lactic acid bacteria in bovine feta cheese decreased from 10.25 to 7.95 and pH also changed from pH 6.22 to pH 5.55 during storage at 4℃ for 14 d aging. The color of feta cheese turned into more whitish (L-value, 100.1) with a red (a-value, 4.6) and gray (b-value,-4.1) color after 14day's aging. For the texture profile analysis of bovine feta cheese, resilience was increased significantly (p<0.01) throughout the aging periods and adhesiveness was rapidly increased right after progressing of aging at both temperatures, but no difference was found between the aging periods. Hardness, fracturability, gumminess and chewiness were gradually increased at 0℃, but no statistical significances were found. Springiness and cohesiveness were not changed at both temperatures. In organoleptic evaluations, organoleptic intensities in sweetness, milky taste and saltiness were significantly enhanced over those of the control cheese at the level of p<0.01, and masticatory texture at p<0.05 with the progress of aging to 14d. Organoleptic preferences were significantly (p<0.01) enhanced except smell, color, mouth feel, and masticatory texture with the aging. In the fatty acid compositions of feta cheese analyzed by gas chromatography, the content of SFA (52.61%) was slight higher than that of USFA (47.39%) composed with MUFA (28.98%) and PUFA (18.41%). Among the nutritionally important fatty acids; ω6 (9.27%) and ω3 (0.55%) fatty acids, CLA (0.12%), arachidonic acid (0.19%) and DHA (0.12%) were also found in bovine feta cheese.

Chemical and Fatty Acid Composition of Longissimus Muscle of Crossbred Bulls Finished in Feedlot

  • do Prado, Ivanor Nunes;de Oliveira, Adriana Nery;Pizzi Rotta, Polyana;Perotto, Daniel;do Prado, Rodolpho Martin;Silva, Roberio Rodrigues;de Souza, Nilson Evelazio;Moletta, Jose Luiz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.1054-1059
    • /
    • 2009
  • This work was carried out to study the chemical and fatty acid composition of Longissimus muscle (LM) of crossbred young bulls finished in a feedlot. After weaning (at 8 months old), the bulls were kept in a feedlot for 180 days. The bulls were kept in individual pens and fed (twice daily) with corn silage, soybean hulls, cracked corn, limestone, urea and mineral salt. The bulls were slaughtered with a final weight of 464 kg. Forty bulls were used: 10 Caracu (CAR), 10 Canchim (CAN), 10 Caracu vs. Charolais (CCH) and 10 Canchim vs. Aberdeen Angus (CAA). The percentages of moisture, ash, crude protein, total lipids, as well as the fatty acid composition, were measured in the LM. The moisture percentage was lower (p<0.05) for bulls from CAA genetic group (71.2%) in comparison to bulls from CAR (74.2%), CAN (74.9%) and CCH (74.7%) genetic groups. On the other hand, there was no difference (p>0.05) among bulls from CAR, CAN and CCH genetic groups. Ash percentage was lower (p<0.05) for CAR bulls (0.96%) in comparison with the other genetic groups. There was no difference (p>0.05) among CAN, CCH and CAA genetic groups. Similarly, there was no difference (p>0.05) in crude protein among the different genetic groups. Total lipids percentage was higher (p<0.05) for CAA bulls (5.35%) and lower (p<0.05) for CAN (1.85%) and CCH (1.41%) genetic groups. Genetic group has little effect on the fatty acid composition of Longissimus muscle of bulls. However, CLA (C 18:2 c-9 t-11) percentage was higher (p<0.05) for CAR (0.33%) and CCH (0.37%) in comparison to CAN (0.27%) and CAA (0.29%) genetic groups. Saturated, monounsaturated and polyunsaturated fatty acids, n-6 and n-3 percentages did not differ (p>0.05) among genetic groups. PUFA/SFA ratio ranged from 0.10 to 0.15, with no difference (p>0.05) among genetic groups. Similarly, n-6/n-3 ratio ranged from 12.6 to 16.3, without difference (p>0.05) among genetic groups.