• Title/Summary/Keyword: c-myc expression inhibitor

Search Result 12, Processing Time 0.036 seconds

Screening for Inhibitor of c-myc Expression and Identification of Isolate No.2303

  • Chung, Ji-Hyung;Yeo, Ick-Hyun;Oh, Doo-Whan;Moon, Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.5
    • /
    • pp.264-268
    • /
    • 1995
  • Sulforhodamine B(SRB) assay was performed on the human lung carcinoma, A549 cell line to screen soil microorganisms for production of anti-cancer agent. Among 4, 265 microorganisms, 45 isolates were selected for their cytotoxicity and tested for their effects on the expression of c-myc by RNA slot blot and Northern blot analysis resulting in selection of No.2303 isolate. This No.2303 was identified as Streptomyces sp. by ISP classification and the chemotaxonomic analysis method. NO.2303 inhibited the expression of cmyc in Col0320 DM and A549 cell lines. The culture extract of No. 2303 also inhibited the progression of the cell cycle of Go in NIH 313 cells, implying that the extract also inhibited the expression of c-myc in NIH 313 cell.

  • PDF

Suppression of Protein Kinase C and Nuclear Oncogene Expression as Possible Action Mechanisms of Cancer Chemoprevention by Curcumin

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.683-692
    • /
    • 2004
  • Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C(PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and LĸB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction path-ways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins playa pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.27 no.4
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Arginine Deiminase Enhances MCF-7 Cell Radiosensitivity by Inducing Changes in the Expression of Cell Cycle-related Proteins

  • Park, Hwan;Lee, Jun-Beom;Shim, Young-Jun;Shin, Yong-Jae;Jeong, Seong-Yun;Oh, Junseo;Park, Gil-Hong;Lee, Kee-Ho;Min, Bon-Hong
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.305-311
    • /
    • 2008
  • After successful clinical application, arginine deiminase (ADI) has been proposed to be a new cancer therapeutic. In the present study, we examined the effect of ADI in combination with ionizing radiation (IR) on MCF-7 cell growth and clonogenic cell death. Cell growth was inhibited by IR in a dose-dependent manner and ADI enhanced the radiosensitivity. ADI itself did not suppress the growth of MCF-7 cells due to the high level of expression of argininosuccinate synthetase (ASS), which convert citrulline, a product of arginine degradation by ADI, to arginine. Previously, it was suggested that ammonia, another product of arginine degradation by ADI, is the main cause of the growth inhibition of irradiated hepatoma cells contaminated with ADI-expressing mycoplasma [van Rijn et al. (2003)]. However, we found that ammonia is not the only factor that enhances radiosensitivity, as enhancement was also observed in the absence of ammonia. In order to identify the enhancing effect, levels of ASS and proteins related to the cell cycle were examined. ASS was unchanged by ADI plus IR, but p21 (a CDK inhibitor) was upregulated and c-Myc downregulated. These findings indicate that changes in the expressions of cell cycle proteins are involved in the enhancement of radiosensitivity by ADI. We suggest that ADI is a potential adjunct to cancer therapy.

LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p

  • Yu Yuan;Zhou Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.398-409
    • /
    • 2023
  • LncRNAs play crucial roles in the progression of colon adenocarcinoma (COAD), but the role of LINC01232 in COAD has not received much attention. The present study was designed to explore the related mechanisms of LINC01232 in the progression of COAD. LINC01232, miR-181a-5p, p53, c-myc, Bcl-2, cyclin D1, p16, Bax, VEGF, E-cadherin, vimentin, N-cadherin and SDAD1 expressions were determined by western blot and qRT-PCR. CCK-8, tubule formation, and Transwell assays were employed to detect proliferation, angiogenesis, and migration/invasion of COAD cells, respectively. The relationship between LINC01232 and miR-181a-5p was predicted by LncBase Predicted v.2, and then verified through dual luciferase reporter gene assay. According to the results, LINC01232 was highly expressed in COAD cells and enhanced proliferation, angiogenesis, migration, and invasion of COAD cells. Downregulated LINC01232 promoted expression of p53 and p16, and inhibited c-myc, Bcl-2 and cyclin D1 expressions in COAD cells, while upregulation of LINC01232 generated the opposite effects. LINC01232 was negatively correlated with miR-181a-5p while downregulated miR181a-5p could reverse the effects of siLINC01232 on cell proliferation, angiogenesis, migration, and invasion. Similarly, miR-181a-5p mimic could also offset the effect of LINC01232 overexpression. SiLINC01232 increased the expressions of Bax and E-cadherin, and decreased the expressions of VEGF, vimentin, N-cadherin and SDAD1, which were partially attenuated by miR-181a-5p inhibitor. Collectively, LINC01232 enhances the proliferation, migration, invasion, and angiogenesis of COAD cells by decreasing miR-181a-5p expression.

Inhibition of SIRT1 Sensitizes TRAIL-Resistant MCF-7 Cells by Upregulation of DR5 and Inhibition of c-FLIP (SIRT1 억제에 의한 DR5 발현증강과 c-FLIP 발현저해 작용으로 사람유방암세포 MCF-7의 TRAIL 감수성 증강)

  • Lee, Su-Hoon;Kim, Hak-Bng;Kim, Mi-Ju;Lee, Jae-Won;Bae, Jae-Ho;Kim, Dong-Wan;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1277-1285
    • /
    • 2012
  • The tumor necrosis, factor-related, apoptosis-inducing ligand (TRAIL) is regarded as a potentially useful anticancer agent with excellent selectivity for cancer cells. However, a considerable number of cancer cells are resistant to apoptosis induction by TRAIL. Developing strategies to overcome this resistance are important for the successful use of TRAIL for cancer therapy. Here, we revealed that siRNA-mediated downregulation of SIRT1 or SIRT1 inhibitor Amurensin G upregulated DR5 and c-Myc and downregulated c-$FLIP_{L/S}$ and Mcl-1, which was associated with sensitization of TRAIL-resistant MCF-7 cells to TRAIL. This result was followed by the activation of caspases, PARP cleavage, and downregulation of Bcl-2 in both TRAIL-treated MCF-7 cells transfected with SIRT1 siRNA and cells co-treated with Amurensin G and TRAIL. Our results suggest that the induction of DR5 and downregulation of c-FLIP via suppression of SIRT1 expression may be a useful strategy to increase the susceptibility of TRAIL-resistant cancer cells to TRAIL-induced cell death.

FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β-catenin

  • Liang, Tao;Ye, Xuxiao;Liu, Yuanyuan;Qiu, Xinkai;Li, Zuowei;Tian, Binqiang;Yan, Dongliang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.8.1-8.12
    • /
    • 2018
  • FAM46B is a member of the family with sequence similarity 46. Little is known about the expression and functional role (s) of FAM46B in prostate cancer (PC). In this study, the expression of FAM46B expression in The Cancer Genome Atlas, GSE55945, and an independent hospital database was measured by bioinformatics and real-time PCR analysis. After PC cells were transfected with siRNA or a recombinant vector in the absence or presence of a ${\beta}$-catenin signaling inhibitor (XAV-939), the expression levels of FAM46B, C-myc, Cyclin D1, and ${\beta}$-catenin were measured by western blot and realtime PCR. Cell cycle progression and cell proliferation were measured by flow cytometry and the CCK-8 assay. The effects of FAM46B on tumor growth and protein expression in nude mice with PC tumor xenografts were also measured. Our results showed that FAM46B was downregulated but that ${\beta}$-catenin was upregulated in patients with PC. FAM46B silencing promoted cell proliferation and cell cycle progression in PC, which were abrogated by XAV-939. Moreover, FAM46B overexpression inhibited PC cell cycle progression and cell proliferation in vitro and tumor growth in vivo. FAM46B silencing promoted ${\beta}$-catenin protein expression through the inhibition of ${\beta}$-catenin ubiquitination. Our data clearly show that FAM46B inhibits cell proliferation and cell cycle progression in PC through ubiquitination of ${\beta}$-catenin.

Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells (K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자)

  • Yang Kwang Mo;Youn Seon-Min;Jeong Soo-Jin;Jang Ji-Yeon;Jo Wol-Soom;Do Chang-Ho;Yoo Y대-Jin;Shin Young-Cheol;Lee Hyung Sik;Hur Won Joo;Lim Young-Jin;Jeong Min-Ho
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2003
  • Purpose: The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A (HWA) coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosils on $p210^{bcr/abl}$ protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the Induction on a number of transcription factors and the differential gene expression in this model were investigated. Materials and Methids: K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 Mev Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with $0.25/muM$ of HMA and $25/muM$ of genistein, and the expressions and the activities of abl kinase, MAPK family, NF- kB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. Results: The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either in association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF- kB activity and the TK1 expression and activity. Conclusion: The effects of HMA and genistein on the radiosensitivity on the K562 cells were not related to the bcr-abl kinase activity in this study, another signaling pathway, besides the WAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the optional radiosensitization or radioprotection.

Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells

  • Jo, Si-Kyoung;Hong, Ji-Young;Park, Hyen Joo;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Although the immense efforts have been made for cancer prevention, early diagnosis, and treatment, cancer morbidity and mortality has not been decreased during last forty years. Especially, lung cancer is top-ranked in cancer-associated human death. Therefore, effective strategy is strongly required for the management of lung cancer. In the present study, we found that novel daphnane diterpenoids, yuanhualine (YL), yuanhuahine (YH) and yuanhuagine (YG) isolated from the flower of Daphne genkwa (Thymelaeaceae), exhibited potent anti-proliferative activities against human lung A549 cells with the $IC_{50}$ values of 7.0, 15.2 and 24.7 nM, respectively. Flow cytometric analysis revealed that the daphnane diterpenoids induced cell-cycle arrest in the G0/G1 as well as G2/M phase in A549 cells. The cell-cycle arrests were well correlated with the expression of checkpoint proteins including the up-regulation of cyclin-dependent kinase inhibitor p21 and p53 and down-regulation of cyclin A, cyclin B1, cyclin E, cyclin dependent kinase 4, cdc2, phosphorylation of Rb and cMyc expression. In the analysis of signal transduction molecules, the daphnane diterpenoids suppressed the activation of Akt, STAT3 and Src in human lung cancer cells. The daphnane diterpenoids also exerted the potent anti-proliferative activity against anticancer-drug resistant cancer cells including gemcitabine-resistant A549, gefitinib-, erlotinib-resistant H292 cells. Synergistic effects in the growth inhibition were also observed when yuanhualine was combined with gemcitabine, gefitinib or erlotinib in A549 cells. Taken together, these findings suggest that the novel daphnane diterpenoids might provide lead candidates for the development of therapeutic agents for human lung cancers.