• Title/Summary/Keyword: c-FLIP_s (short form)

Search Result 2, Processing Time 0.022 seconds

Full-length Fas-associated Death Domain Protein Interacts with Short Form of Cellular FLICE Inhibitory Protein

  • Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • Fas-associated death domain protein (FADD) recruits and activates procaspase-8 through interactions between the death effector domains of these two proteins. Cellular FLICE-inhibitory protein (c-FLIP) was identified as a molecule with sequence homology to caspase-8. It has been postulated that c-FLIP prevents formation of the competent death-inducing signaling complex in a ligand-dependent manner, through its interaction with FADD and/or caspase-8. However, the interaction of FADD and $c-FLIP_s$ (short form) in apoptosis signaling has been controversially discussed. We show the purification and the characterization of human full-length FADD and $c-FLIP_s$ expressed in Escherichia coli. The purified FADD and $c-FLIP_s$ are shown as homogeneity, respectively, in SDS-PAGE analysis and light-scattering measurements. The folding properties of the $\alpha$-helical structure of FADD and the super-secondary structure of $c-FLIP_s$ proteins were characterized by circular dichroism spectroscopy. Furthermore, we report here a series of biochemical and biophysical data for FADD-$c-FLIP_s$ binding in vitro. The binding of both FADD and $c-FLIP_s$ proteins was detected by BIAcore biosensor, fluorescence measurement, and size-exclusion column (SEC).

C-FLIP Promotes the Motility of Cancer Cells by Activating FAK and ERK, and Increasing MMP-9 Expression

  • Park, Deokbum;Shim, Eunsook;Kim, Youngmi;Kim, Young Myeong;Lee, Hansoo;Choe, Jongseon;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.184-195
    • /
    • 2008
  • We examined the role of c-FLIP in the motility of HeLa cells. A small interfering RNA (siRNA) directed against c-FLIP inhibited the adhesion and motility of the cells without affecting their growth rate. The long form of c-FLIP ($c-FLIP_L$), but not the short form ($c-FLIP_S$), enhanced adhesion and motility. Downregulation of $c-FLIP_L$ with siRNA decreased phosphorylation of FAK and ERK, while overexpression of $c-FLIP_L$ increased their phosphorylation. Overexpression of FAK activated ERK, and enhanced the motility of HeLa cells. FRNK, an inhibitory fragment of FAK, inhibited ERK and decreased motility. Inhibition of ERK also significantly suppressed $c-FLIP_L$-promoted motility. Inhibition of ROCK by Y27632 suppressed the $c-FLIP_L$-promoted motility by reducing phosphorylation of FAK and ERK. Overexpression of $c-FLIP_L$ increased the expression and secretion of MMP-9, and inhibition of MMP-9 by Ilomastat reduced $c-FLIP_L$- promoted cell motility. A caspase-like domain (amino acids 222-376) was found to be necessary for the $c-FLIP_L$-promoted cell motility. We conclude that $c-FLIP_L$ promotes the motility of HeLa cells by activating FAK and ERK, and increasing MMP-9 expression.