• Title/Summary/Keyword: c-Axis orientation

Search Result 360, Processing Time 0.03 seconds

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Effects of Disk Surface Velocity on the Microstructures and Magnetic Properties of Anisotropic ${(Nd_{0.8}Dy_{0.2})}_{12}Fe_{80}B_8$ Melt-spun Ribbons (이방성${(Nd_{0.8}Dy_{0.2})}_{12}Fe_{80}B_8$ 급속 응고리본의 미세조직 및 자기특성에 미치는 디스크 표면속도의 영향)

  • 신현철;김동환;김택기;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.69-73
    • /
    • 1991
  • The effects of disk surface velocity on the microstructures and magnetic properties of ${(Nd_{0.8}Dy_{0.2})}_{12}Fe_{80}B_8$ melt-spun ribbons were investigated. From the X-ray diffraction results. it is confirmed that the lower the surface velocity ($V_{s}$), the better the orientation of c-axis normal to the ribbon plane. The results of magnetic property measurements for the powder solidfied in magnetic field showed that the highest remanence was obtained from the alloy quenched at medium velocity of $V_{s}=14.6m/s$. The remanence of the powder solidfied in magenetic field was about 10 % higher than that of the powder solidfied in non-magnetic field.

  • PDF

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

Magnetic Propwrties of High Quality $Nd_{12}Fe_{80}B_{6}(Nb, M)$ (M=Ti/Cu/Ga) Melt-Spun Ribbons (고특성 $Nd_{12}Fe_{80}B_{6}(Nb, M)$ (M=Ti/Cu/Ga)급속응고리본의 자기특성)

  • 김윤배;김창석;김동환;이갑호;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.44-49
    • /
    • 1992
  • Magnetic properties and microstructures of $Nd_{12}Fe_{80}B_{6}(Nb,\;M)$ (M=Ti/Cu/Ga) melt-spun ribbons prepared by single wheel technique have been studied. The results of microstructural study have shown that Ga is effective for the orientation of c-axis normal to the ribbon plane. The Ga-added melt-spun ribbon, $Nd_{12}Fe_{80}B_{6}(Nb,\;Ga)$, quenched at $V_{s}=17.9\;m/s$ was mostly composed of fine grains of about 30 nm in size with the textured free-side surface. The powder of this ribbon aligned in mag-netic field showd a high remanence of 0.87 T which was about 5 % higher than that of ribbon itself. It is believed that there is a possibility to fabricate a new type of HIREM melt-spun ribbon with highly textured free-side surface.

  • PDF

Thickness Dependent Properties of Al-doped ZnO Film Prepared by Using the Pulsed DC Magnetron Sputtering with Cylindrical Target (원통형 타겟 타입 Pulsed DC Magnetron Sputtering에서 두께 변화에 따른 Al-doped ZnO 박막의 특성 변화)

  • Shin, Beom-Ki;Lee, Tae-Il;Park, Kang-Il;Ahn, Kyoung-Jun;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.47-50
    • /
    • 2010
  • Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dc magnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural, electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO films have (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surface morphology of the films changed according to the film thickness. The samples with higher surface roughness exhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrier concentration revealed that there were no changes for all the film thicknesses. The optical transmittances were more than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity, $4.13\times10^{-4}\Omega{\cdot}cm^{-1}$ was found in 750 nm films with an electron mobility $(\mu)$ of $10.6 cm^2V^{-1} s^{-1}$ and a carrier concentration (n) of $1.42\times10^{21} cm^{-3}$.

Effect of Oxygen Mixture Ratio on the Properties of ZnO Thin-Films and n-ZnO/p-Si Heterojunction Diode Prepared by RF Sputtering (산소 혼합 비율에 따른 RF 스퍼터링 ZnO 박막과 n-ZnO/p-Si 이종접합 다이오드의 특성)

  • Gwon, Iksun;Kim, Danbi;Kim, Yewon;Yeon, Eungbum;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.456-462
    • /
    • 2019
  • ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and $O_2$ mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and room-temperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when $O_2$ is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ${\pm}3V$ of the reverse and forward bias voltage is about $5.8{\times}10^3$, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

The Structural and Electrical Properties of Li doped ZnO Thin Films (Li이 도핑된 ZnO 박막의 구조적 및 전기적 특성)

  • You, Gyeon-Gue;Kwon, Dae-Hyuk;Jun, Choon-Bae;Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.146-152
    • /
    • 2000
  • Lithium doped zinc oxide(ZnO:Li) films are prepared by rf magnetron sputtering on Corning 7059 glass substrate using specifically designed ZnO targets containing different amount of $Li_2CO_3$ powder as the Li doping source. The structural properties of the Li doped ZnO films are investigated by XRD, SEM and AFM. The electrical properties of the ZnO:Li films are measured for various deposition conditions, such as the substrate temperature, $O_2$/Ar gas ratio and rf power. The effects of the $Li_2CO_3$ content in target and the deposition conditions on the structural and electrical properties were studied. When ZnO:Li films were sputtered at the substrate temperature of $200^{\circ}C$, $O_2$/Ar gas ratio of 100% and rf power of 100W with a target containing less than 1wt% content of $Li_2CO_3$, showed good surface morphology, strong c-axis orientation and high resistivity of more than $10^8{\Omega}cm$.

  • PDF

Electrical and Optical Properties of phosphorus doped ZnO Thin Films at Various Post-Annealing Temperatures (후열 처리 온도 변화에 따른 phosphorus doped ZnO 박막의 전기적 및 광학적 특성)

  • Han, Jung-Woo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • The effects of post-annealing temperature on the optical and electrical properties of P-doped ZnO thin films grown on sapphire substrate have been investigated under oxygen ambient. The XRD shows that regardless of the post-annealing temperature, all P-doped ZnO thin films indicate the c-axis orientation. The results of hall effect measurements indicate the P-doped ZnO thin film annealed at $850^{\circ}C$ exhibits p-type behavior with hole concentration of $1.18{\times}1016cm^{-3}$ and hole mobility of $0.96cm^2/Vs$. The low-temperature (10K) Photoluminescence results reveal that the peak related to the neutral-acceptor exciton (A0X), free electrons to neutral acceptor (FA) and donor acceptor pair (DAP) at 3.351ev, 3.283eV and 3.201eV are observed in the films showing p-type behavior with acceptor. The optimization of deposition and post-annealing conditions will certainly make the P-doped ZnO thin films promising materials for the application to the next generation of optical devices.

Wet chemical etching of molten KOH/NaOH eutectic alloy to evaluate AlN single crystal (AlN 단결정의 품질평가를 위한 molten KOH/NaOH eutectic alloy의 화학적 습식에칭)

  • Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2014
  • We investigated the optimal etching conditions and properties of the surface change due to molten KOH/NaOH chemical wet etching using an AlN wafer which has been put to practical use in the present study. Results were observed using a scanning electron microscope after 5 minutes etching at $350^{\circ}C$, was found to have a surface form of the respective other Al-face, the N-face. In particular, etch-pit in the form of a hexagon, which is observed in the Al-face appeared, It was calculated at $2{\times}10^6/cm^2{\sim}10^{10}/cm^2$ dislocation density. In the case of N-face, lattice defects in the form of the hexagonal pyramids is formed. It was discovered that in order to observe the orientation of the wafer, which corresponds to the C-axis direction of the resulting hexagonal AlN which was analyzed using XRD (0002) and is a state of being oriented in the (0004) plane. The Radius of curvature of AlN wafer was 1.6~17 m measured by DC-XRD rocking curve position.