• Title/Summary/Keyword: c/c composite

Search Result 3,908, Processing Time 0.027 seconds

C. M. Guzay and the Quadrant Theorem (C. M. Guzay의 Quadrant Theorem에 대한 고찰)

  • Yin, Chang Shik;Lee, Young-Jun
    • Journal of TMJ Balancing Medicine
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2012
  • Objectives: The quadrant theorem is a theorem proposed by C. M. Guzay in the field of functional, holistic dentistry. There are not much of scientific literature on the quadrant theorem. This study briefly reviewed basic concepts of quadrant theorem. Methods: A publication by Guzay and research articles were searched and reviewed. The quadrant theorem is depicted as a series of illustrations and accompanied explanations. Results: The primary concept of the quadrant theorem was presented in 1952. Based on geometric biophysics of the occlusion and related anatomical functions, physiological pivotal axis of the mandible is analyzed to occurs at the dens (the sub-atlas area). Composite muscular activity links the mandibular posture with C1-C2, which is then linked with the spinal posture. Twenty illustrations are progressively presented on the physiognomy, occlusion, and analysis of anatomical functions. The balanced distribution of the forces gives the durability of the functions in life. Conclusions: The quadrant theorem provides a functional linkage between the mandibular posture and the upper cervical vertebrae.

  • PDF

Effect of SiC Particle Size on Hot Workability of AA2024/$SiC_P$ Composites (AA2024/$SiC_P$ 복합재료의 열간 가공성에 미치는 강화상 크기의 영향)

  • 고병철;홍흥기;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.81-84
    • /
    • 1997
  • The hot deformation behavior of SiCp/AA2024 composites reinforced with different sizes of SiCp reinforcements (1, 8, 15, 36, and 44${\mu}{\textrm}{m}$) was investigated by hot torsion tests. The hot restoration of the composites depending on the SiCp reinforcements particle size was studied from the effective stress - strain curves. Dynamic recrystallization (DRX) was occurred in the SiCp/AA2024 composites during the hot deformation at 320 - 43$0^{\circ}C$ under a strain rate of 1.0/sec. Also, the critical strain for DRX decreased with decreasing the reinforcement size of SiCp from 44 to 8${\mu}{\textrm}{m}$. The composite reinforced with SiCp of 8${\mu}{\textrm}{m}$ showed the highest flow stress (265 MPa) and the work hardening rate at 32$0^{\circ}C$ under a strain rate of 1.0/sec.

  • PDF

Densification Behavior of Fine SiC Particle-Dispersed $Al_2$$O_3$-SiCComposite by Sinter Plus HIP (Sinter Plus HIP에 의한 $Al_2$$O_3$-SiC 나노복합재료의 치밀화 거동)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.179-182
    • /
    • 2001
  • Al$_2$O$_3$-5 vol% SiC 나노복합재료의 sinter plus HIP에 의한 치밀화시 일어나는 기공의 변화에 초점을 두어 치밀화 거동을 관찰하였다. $Al_2$O$_3$-SiC 시편은 질소분위기 중의 상압소결과 이후의 열간정수압소결(HIP)에 의해 완전치밀화가 이루어졌다. 155$0^{\circ}C$의 상압소결에 의해서는 90%의 비교적 낮은 상대밀도가 얻어졌으나, 기공의 폐기공화로 이후의 열간정수압소결(HIP)에 의해 99.6%의 완전치밀화가 가능하였다. 상압소결한 시편을 X-선 회절기와 주사전자현미경(SEM)으로 관찰한 결과, 선택적으로 시편 표면부에서만 SiAl$_{6}$O$_2$N$_{6}$과 AlN 등으로 이루어진 치밀화된 반응층을 확인할 수 있었으며, 이러한 표면 반응층이 비교적 낮은 상대밀도의 시편내의 모든 기공을 폐기공화하는 효과를 주는 것을 알 수 있었다.

  • PDF

Liquid Phase Sintering of Silicon Carbide (탄화규소의 액상소결)

  • 김원중;김영욱
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1162-1168
    • /
    • 1995
  • Systematic studies of the effects of additives and processing variables on the sintered density and the effect of crystalline forms of starting powders on the microstructure of pressureless sintered silicon carbide are described. Oxide additives were effective for the densification of SiC up to 96% of theoretical density at temperature as low as 185$0^{\circ}C$. Use of embedding powder increased the sintered density, up to 98% of theoretical density, by decreasing the weight loss during sintering. Composite type duplex microstructure has been developed due to the $\beta$longrightarrow$\alpha$ phase transformation of SiC by sintering at 185$0^{\circ}C$ and heat treatment at 195$0^{\circ}C$ for 1h.

  • PDF

Preparation of Silicon Nitride-silicon Carbide Composites from Abrasive SiC Powders

  • Kasuriya, S.;Thavorniti, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1091-1092
    • /
    • 2006
  • Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at $1400^{\circ}C$ under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of ${\alpha}-Si_3N_4$ and ${\beta}-Si_3N_4$ as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the $Si_3N_4$ content formed in the reaction.

  • PDF

Preparation and Properties of 15R-Sialon by SHS (SHS법에 의한 15R-Sialon의 제조 및 특성)

  • 김상섭;이온영;이철규;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.407-414
    • /
    • 1994
  • Compacts were prepared using the SHS(Self-propagating High-temperature Synthesis) method and nitrided at temperatures range from 145$0^{\circ}C$ to 175$0^{\circ}C$, and pressed at 180$0^{\circ}C$ under N2 atmosphere. The samples were characterized for bulk density, porosity, pore size and distribution, phase composition, microstructure and fracture toughness. Compacts were composed of whiskers, which showed a good candidate for the composite materials. The major phases of the compacts nitrided at 175$0^{\circ}C$ and pressed at 180$0^{\circ}C$ were 15R-sialon with a large aspect ratio.

  • PDF

Abrasion and Impact Wear Resistance of the Fe­based Hardfacing Weld by Dispersing the Recycled WC

  • Kang, N.H.;Chae, H.B.;Kim, J.K.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The abrasion and impact wear resistance were investigated on the hardfacing weld dispersed with the recycled hard metal(HM). The HM was composed of the tungsten carbide(WC) reinforced metal matrix composite. The cored wire filled with the 35 wt.% HM and 0­6 wt.% of the alloying element, Fe­75Mn­7C(FeMnC), was used for the gas metal arc(GMA) welding. The FeMnC addition to the 35 wt.% HM did not improve the abrasion wear property since the amount of the tungsten carbide formed was decreased with respect to the FeMnC amount. However, the 6 wt.% FeMnC addition to the 35 wt.% HM exhibited the better impact wear resistance than the hardfacing weld by the 40 wt.% HM.

  • PDF

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1331-1335
    • /
    • 2010
  • A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

Design of steel and composite beams with web openings - Verification using finite element method

  • Chung, K.F.;Ko, C.H.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.203-233
    • /
    • 2005
  • This paper presents the findings of a design development project for perforated beams fully integrated with building services. A unified design approach for both steel and composite beams with large rectangular web openings is proposed which is based on plastic design methods and formulated in accordance with analytical structural design principles. Moreover, finite element models are established after careful calibration against test data, and comparison on the predicted ultimate loads of two composite beams with rectangular web openings from the finite element models and the proposed design method is also presented. It is demonstrated that the proposed design method is able to predict the ultimate loads of composite beams with rectangular web openings against 'Vierendeel' mechanism satisfactorily.

Photocatalysis Characteristics of Nano Cu/TiO2 Composite Powders Fabricated from Salt Solution (염용액으로부터 제조된 Cu/TiO2복합분말의 광촉매 특성)

  • 고봉석;안인섭;배승열;이상진
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.136-141
    • /
    • 2003
  • In the present study, $TiO_2$ imbedded copper matrix powders have been successfully prepared from the ($CuSO_4+TiO_2+Zn$) composite salt solution. The composite $Cu/TiO_2$ powders were formed by drying the solution at $200{\sim}~400^{\circ}C$ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting TOC (total organic carbon) amount with TOC analyzer (model 5000A Shimadzu Co). Phase analysis of $Cu/TiO_2$ composite powders was carried out by XRD, DSC and powder size was measured with TEM. The mean particle size of composite powders was about 100 nm and a few zinc and copper oxide phases was included. The reduction ratio of TOC amount was 60% by the composite $Cu/TiO_2$ powders under the UV irradiation for 8 hours.