• 제목/요약/키워드: c/c composite

검색결과 3,896건 처리시간 0.037초

Rheo-Compocasting법으로 제조한 Mg/SiCp 복합재료의 조직 및 경도 특성에 미치는 Zn, Zr 첨가의 영향 (Effects of Zn, Zr Addition on Microstructures and Hardness of Mg/SiCp Composites Fabricated by Rheo-Compocasting)

  • 홍성길;최정철
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.588-595
    • /
    • 1995
  • SiC particles reinforced Mg-Zr, Mg-Zn and Mg-Zn-Zr composites were manufactured by Rheocompocasting method. Effects of Zn, Zr addition on microstructures and hardness were investigated by using the micro Vickers hardness tester, the optical and scanning electron microscopy. By the Zr addition to the pureMg/SiCp composites, SiC particles become more homogeneously dispersed and grain refined so that the micro hardness of the composite increased. In case of Zn addition, although grain refinement and homogeneous dispersion effects of SiC particles were not obtained, hardness was more increased than the only Zr added composite by the formation of many Mg-Zn intermetallic compounds at grain boundary. In the Mg-Zn-Zr/SiCp composite, the highest value of hardness was obtained by triple effects such as grain refining, dispersion hardening of SiC particles and Mg-Zn compounds.

  • PDF

Cr 및 Nb 복합탄화물에 의한 철계 MAG용접 오버fp이의 내마모 특성 (Wear Resistance Characteristics of Iron System MAG Weld Overlays with Chromium and Niobium Carbide Composite)

  • 김종철;박경채
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.54-59
    • /
    • 2002
  • Overlays is a treatment of the surface and near-surface regions of a material to allow the surface to perform functions that are distinct from those frictions demanded far the bulk of the material. Welding, thermal spray, quenching, carburizing and nitration have been used as the surface treatment. Especially, weld overlay is a relatively thick layer of filler metal applied to a carbon or low-alloy steel base metal for the purpose of providing a wear resistant surface. In this study, weld overlay was performed by MAG welding on the base metal(SS400) with filler metal which contain composite powders($Cr_3C_2+Mn+Mo+NbC$) and solid wire(JIS-YGW11). Characteristics of hardness and wear resistance on overlays were analyzed by EDS, EPMA, XRD and microstructures. Carbide formations were $M(Cr, Fe)_7C_3$ and NbC phases. And carbide volume fraction, hardness and specific wear resistance of overlays were increased with increasing powder feed rate and decreasing wire fred rate. Hardness and wear resistance were almost proportioned to carbide volume fraction of overlay.

Creep Behavior of Hot Extruded Al-5% SiC Composite Powder

  • Monnazah, A. Hosseini;Simchi, A.;Reihani, S.M. Seyed
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1059-1060
    • /
    • 2006
  • The creep behavior of Al-5vol.% SiC composite was investigated. The composite powder was produced by mechanical milling and hot extruded at $450^{\circ}C$ at ratio of 16:1. A creep test was carried out at a constant load at 598, 648, and 673 K. Using the steady-state equations, the threshold stress and the stress exponent of the creep as a function of temperature were determined. The stress exponent was found to be 3 at the temperature of 673 K and 8 at 598 and 648 K. The dependency of the threshold stress to temperature obeys the Arrhenius relationship with the energy term of $29\;kJ\;mole^{-1}$.

  • PDF

Hot Deformation Behavior of P/M Al6061-20% SiC Composite

  • Asgharzadeh, Hamed;Simchi, Abdolreza
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.855-856
    • /
    • 2006
  • In the present work, hot workability of particulate-reinforced Al6061-20%SiC composite produced by direct hot extrusion technique was studied. Uniaxial hot compression test at various temperatures and strain rates was used and the workability behavior was evaluated from the flow curves and the attendant microstructures. It was shown that the presence of SiC particles in the soft Al6061 matrix deteriorates the hot workability. Bulging of the specimens and flow lines were observed, which indicate the plastic instability during hot working. Microstructure of the composites after hot deformation was found to be heterogeneous, i.e. the reinforcement clusters were observed at the flow lines. The mechanism of deformation was found to be controlled primarily by dynamic recrystallization.

  • PDF

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

복합말뚝 연결부 안정성 평가 및 수평거동특성 분석 (Joint Stability and lateral behavior of composite piles)

  • 신윤섭;박재현;황의성;조성한;정문경;부교탁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.553-558
    • /
    • 2010
  • The behavior of composite piles composed of steel pipe pile in the upper part and concrete pile in the lower part by a mechanical splicing joint was examined by field lateral load tests and bending tests. A total of 7 piles including two instrumented piles for bending test were installed. The soil profile consists of soft clay with weak silt with shallow groundwater level. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. This paper presents the composite pile behavior with various portions of the upper steel pile: 0, 20, 30, and 45% of the pile embedded pile length. Three-point bending tests were performed to investigate the stress-strain relation at the mechanical joint. Based on these test results, the behavior of composite piles with various upper steel pile length are evaluated and the stability of mechanical joints are examined. Through comparisons with results of field load tests, it was found that lateral load carrying capacity of the composite piles increased and deflections of the composite piles decreased with increasing the upper steel piles. The mechanical joint was proved to retain its structural stability against the tested load conditions. Economical benefits of composite pile of this kind can be gained by setting adequately the length of the upper steel pipe piles.

  • PDF

분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동 (High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition)

  • 정강;김두환;김호경
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

Carbon Fiber Reinforced Ceramics based on Reactive Melt Infiltration Processes

  • Lenz, Franziska;Krenkel, Walter
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.287-294
    • /
    • 2012
  • Ceramic Matrix Composites (CMCs) represent a class of non-brittle refractory materials for harsh and extreme environments in aerospace and other applications. The quasi-ductility of these structural materials depends on the quality of the interface between the matrix and the fiber surface. In this study, a manufacture route is described where in contrast to most other processes no additional fiber coating is used to adjust the fiber/matrix interfaces in order to obtain damage tolerance and fracture toughness. Adapted microstructures of uncoated carbon fiber preforms were developed to permit the rapid infiltration of molten alloys and the subsequent reaction with the carbon matrix. Furthermore, any direct reaction between the melt and fibers was minimized. Using pure silicon as the reactive melt, C/SiC composites were manufactured with an aim of employing the resulting composite for friction applications. This paper describes the formation of the microstructure inside the C/C preform and resulting C/C-SiC composite, in addition to the MAX phases.

유리섬유의 열처리조건이 섬유 인장강도에 미치는 영향 (Effect of Heat Treatment Condition on Tensile Strength of Glass Fibers)

  • 이재락;오진석;박수진;김영근
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.257-260
    • /
    • 2002
  • 자체적으로 방사된 C-유리섬유와 E-유리섬유의 최적 싸이징제 제거 열처리온도조건을 알아보기 위하여 대류오븐에서 100, 200, 300, 그리고 $400^{\circ}C$에서 2, 4, 8, 16, 32, 64 그리고 128분 동안 체류한 섬유의 인장강도를 측정하였다. 그리고 다른 열처리조건으로 325, 350, 375 그리고 $400^{\circ}C$$25^{\circ}C$씩 증가시켜 처리시간은 1.5, 3, 6, 12, 24, 48 그리고 96시간을 선택하여 섬유의 인장강도 변화를 측정하였다. C-유리섬유의 경우 열처리에 의한 인장강도 감소가 최대 1.8%정도 였다. E-유리섬유의 열처리에 의한 인장강도의 감소률은 최대 약 1%정도였다. C-유리섬유의 경우 열처리 온도가 짧은 시간과 긴체류시간에서 일정한 영향을 미쳤다. 즉 높은 열처리 온도에서 높은 인장강도 감소를 나타내었다. 그 반면 E-유리섬유의 경우 짧은 체류시간에 있어서는 C-유리섬유와 유사한 특성을 나타내었으나 긴체류 시간에 있어서는 열처리 온도조건에 의한 영향이 극히 미미하였다.

  • PDF

Al-Li/SiC 계면의 젖음성에 관한 연구 (A study on the wettability of the Al-Li/SiC interface)

  • 김기배;김도향;이호인
    • 한국주조공학회지
    • /
    • 제12권2호
    • /
    • pp.149-154
    • /
    • 1992
  • The wetting behaviour of SiC/Al-Li composite interface has been investigated by using an infiltration method. The critical pressure for melt infiltration into SiC particulate preform has been determined by measuring the melt infiltration distance changes with the variation of applied pressure. The threshold pressure of pure Al, Al-0.2wt%Li, Al-0.5wt%Li for melt infiltration are 3.94, 3.93, $3.7Kg/cm^2$ respectively, which implies a slight improvement in wettability of SiC/Al composite by addition of Li. The threshold pressure for melt infiltration also changes with the variation of other parameters such SiC particulate size, SiC particulate fraction and melt temperature.

  • PDF