• 제목/요약/키워드: c/c composite

검색결과 3,896건 처리시간 0.032초

나노구조 (W,Ti)C-Graphene 복합재료 급속소결 (Rapid Sintering of Nanocrystalline (W,Ti)C-Graphene Composites)

  • 김성은;손인진
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.854-860
    • /
    • 2018
  • In spite of the many attractive properties of (W,Ti)C, its low fracture toughness limits its wide application. To improve the fracture toughness generally a second phase is added to fabricate a nanostructured composite. In this regard, graphene was considered as the reinforcing agent of (W,Ti)C. (W,Ti)C-graphene composites that were sintered within 2 min using pulsed current activated heating under a pressure of 80 MPa. The rapid consolidation method allowed retention of the nano-scale microstructure by blocking the grain growth. The effect of graphene on the hardness and microstructure of the (W,Ti)C-graphene composite was studied using a Vickers hardness tester and FE-SEM. The grain size of (W,Ti)C was reduced remarkably by the addition of graphene. Furthermore, the hardness decreased and the fracture toughness improved with the addition of graphene.

자발연소반응을 이용한 (TiC+Al2O3)/Al 복합재료의 저온합성 (Low-temperature Synthesis of (TiC+Al2O3) Reinforced Al Matrix Composite Based on Self-combustion Reaction)

  • 이정무;김수현;조영희;김제우;이재철
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.1001-1004
    • /
    • 2011
  • The formation of TiC and $Al_2O_3$ particles based on the self-combustion reaction of the $Al-TiO_2-C-CuO$ system in an Al alloy melt was investigated. With an adequate amount of CuO in the system, a spontaneous reaction occurred within the Al alloy melt at $850^{\circ}C$ and thereafter was self-maintained, producing an Al matrix composite reinforced with thermodynamically stable TiC and $Al_2O_3$ particles. TiC and $Al_2O_3$ particles contributed to a considerable increase in the strength and stiffness, demonstrating the feasibility of this method as a practical application for structural parts.

SiC-ZrB$_2$계 도전성 복합 세라믹스의 방전가공 (Electrical discharge Machining of SiC-ZrB$_2$Electroconductive Ceramic Composities)

  • 신용덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 1996
  • The influences of ZrB$_2$additives to the SiC and pulse width on electrical discharge machining of SiC-ZrB$_2$electroconductive ceramic composites were investigated. IIigher-flexural strength materials show a trend toward smaller crater volumes, leaving a soother surface; the average surface roughness of the SiC-ZrB$_2$15 Vol.% Composite with the flexural strength of 375㎫ was 3.2${\mu}{\textrm}{m}$,whereas the SiC-ZrB$_2$30 Vol.% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$composites, the SiC-ZrB$_2$two phaes are distinct; the white phase is the ZrB$_2$. In the micrograph of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present.

  • PDF

Effect of SiC on the Mullite-Cordierite Composite Properties

  • Motaman, A.;Amin, S.A.;Jahangir, A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1067-1070
    • /
    • 2006
  • Experimental samples were produced with mullite and cordierite powders with SiC. Effects of temperature, atmosphere and additive on the composite properties were investigated by XRD, STA and PSA methods. Results show that samples containing calcinate cordierite and calcinate mullite with SiC baked in air atmosphere have not suitable properties at the temperature range of $1380-1450^{\circ}C$ due to SiC intensive oxidation, while argon atmosphere decrease SiC oxidation. Using $Bi_2O_3$ as the additive, cordierite phase formation and prevention from SiC oxidation at low temperatures were achieved, leading to the improvement of physical and mechanical properties

  • PDF

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

고분자 열분해에 의한 $MoSi_2$/SiC 세라믹 복합체 ($MoSi_2$/SiC Ceramic Composites Prepared by Polymer Pyrolysis)

  • 김범섭;김득중;김동표
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.805-810
    • /
    • 2000
  • The formation, microstructure and properties of MoSi2/SiC ceramic composites by polymer pyrolysis were investigated for the application of heating element material. Polymethylsiloxanes were mixed with Si, SiC, MoSi2 as filler and ceramic composites prepared by pyrolysis in N2 atmosphere at 1320~145$0^{\circ}C$ were studied. Dimensional change, density variation and phases were analyzed and correlated to the resulting material properties. Microstructures of ceramic composite prepared by polymer pyrolysis were composed of MoSi2, SiC and silicon oxycarbide glass matrix. Depending on the pyrolysis conditions, ceramic composites with a density of 86~90 TD%, a fracture strength of 213~284 MPa, a thermal expansion coefficient of 4~7$\times$10-6 were obtained. The electrical resistivity of the specimen decreased with increasing of temperature up to 50$0^{\circ}C$.

  • PDF

중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화 (Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model)

  • 홍세흠;이원재;이승범
    • 공업화학
    • /
    • 제28권5호
    • /
    • pp.559-564
    • /
    • 2017
  • 본 연구에서는 폐식용유를 이용한 바이오디젤 제조공정에 반응표면분석법 중 중심합성계획모델을 이용하여 최적화 과정을 수행하였다. 공정변수로는 폐식용유의 산가, 반응시간, 반응온도, 메탄올/유지 몰비, 촉매량 등을 선택하였고, 반응치로는 FAME 함량(96.5% 이상) 및 동점도(1.9~5.5 cSt)를 설정하였다. 기초실험을 통해 계량인자범위를 반응시간 (45~60 min), 반응온도($50{\sim}60^{\circ}C$), 메탄올/유지 몰비(8~12)로 정하고, 중심합성계획모델을 이용한 최적화 결과 바이오디젤의 제조공정의 최적조건은 반응시간 55.2 min, 반응온도 $57.5^{\circ}C$, 메탄올/유지 몰비 10으로 나타났다. 이 조건에서 바이오디젤의 예측 FAME 함량은 97.5%, 동점도는 2.40 cSt이었으며, 실제 실험을 통해 확인한 결과 FAME 함량(97.7%), 동점도(2.41 cSt)로 측정되어 오차율은 각각 0.23, 0.29%로 나타났다. 따라서 폐식용유 원료 바이오디젤 제조공정 최적화 과정에 반응표면분석법 중 중심합성계획모델을 적용할 경우 매우 낮은 오차율을 얻을 수 있었다.

접촉 조건에 따른 C/C-SiC-Cu복합재와 Al/SiC복합재의 마모 특성에 관한 연구 (Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions)

  • 김병국;신동갑;김창래;구병춘;김대은
    • 대한기계학회논문집A
    • /
    • 제41권1호
    • /
    • pp.21-30
    • /
    • 2017
  • 디스크 브레이크의 온도는 제동 시 변할 수 있으며 이러한 표면 온도의 변화는 마찰/마모 특성에 영향을 줄 수 있다. 따라서 효율이 우수한 브레이크 개발을 위해서는 브레이크 소재의 마찰/마모 특성에 대한 이해가 필요하다. 본 연구에서는 디스크 브레이크 시스템에 사용되는 C/C-SiC-Cu복합재와 Al/SiC복합재에 대하여 표면 온도와 접촉압력에 따른 마찰/마모 특성을 비교하였다. 이를 위해 온도 및 하중조절이 가능한 pin-on-reciprocating방식의 마찰실험기를 사용하였다. 실험결과, 마찰은 온도와 거리에 따라 현저하게 변하였다. 또한 마모로 인하여 생성된 입자가 접촉 압력에 의해 표면에 뭉쳐져 transfer layer가 형성되었고, 표면 거칠기가 증가하였다. 이러한 연구 결과는 다양한 조건에서 작동하는 브레이크 시스템 개발을 위한 기초자료로 활용될 수 있을 것이다.

고에너지 밀링 및 합성반응에 의한 Fe-TiC 복합분말 제조 (Fabrication of Fe-TiC Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis)

  • 안기봉;이병훈;이용희;;김지순
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.53-59
    • /
    • 2013
  • Fe-TiC composite powder was fabricated via two steps. The first step was a high-energy milling of FeO and carbon powders followed by heat treatment for reduction to obtain a (Fe+C) powder mixture. The optimal condition for high-energy milling was 500 rpm for 1h, which had been determined by a series of preliminary experiment. Reduction heat-treatment was carried out at $900^{\circ}C$ for 1h in flowing argon gas atmosphere. Reduced powder mixture was investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Laser Particle Size Analyser (LPSA). The second step was a high-energy milling of (Fe+C) powder mixture and additional $TiH_2$ powder, and subsequent in-situ synthesis of TiC particulate in Fe matrix through a reaction of carbon and Ti. High-energy milling was carried out at 500 rpm for 1 h. Heat treatment for reaction synthesis was carried out at $1000{\sim}1200^{\circ}C$ for 1 h in flowing argon gas atmosphere. X-ray diffraction (XRD) results of the fabricated Fe-TiC composite powder showed that only TiC and Fe phases exist. Results from FE-SEM observation and Energy-Dispersive X-ray Spectros-copy (EDS) revealed that TiC phase exists uniformly dispersed in the Fe matrix in a form of particulate with a size of submicron.

$Al_2O_3-ZrO_2-SiC$ Whisker 복합재료에서의 R-curve 거동에 관한 연구 (Study on the R-curve Behaviour in $Al_2O_3-ZrO_2-SiC$ Whisker Comosite)

  • 김현하;박현;최성철
    • 한국세라믹학회지
    • /
    • 제30권9호
    • /
    • pp.731-739
    • /
    • 1993
  • R-curve measurements were performed on Al2O3(matrix)-ZrO2-SiC whisker composite and Al2O3-ZrO2, Al2O3-SiC whisker composites in the favor of comparing the effect of ZrO2 and SiC whisker, as a second phase, to Al2O3 matrix. Al2O3-SiC whisker and Al2O3-ZrO2-SiC whisker were fabricated by hot pressing at 1$700^{\circ}C$, 15MPa and Al2O3-ZrO2 by pressureless sintering at 1$600^{\circ}C$. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension and R-curve behaviour was determined from the relationship which is KR=K0(Δa)m. R-curveresults were KR=6.173$\times$Δa0.031 for Al2O3-ZrO2, KR=18.796$\times$Δa0.172 for Al2O3-SiC whisker and KR=11.96$\times$Δa0.110 for Al2O3-ZrO2-SiC whisker composite. From the analysis of R-curve and expeirmental data above three composites, it is found that R-curve behaviour of Al2O3-ZrO2-SiC whisker composite was dominated initially by the strengthening effect of ZrO2 and after, some extended crack were influenced by the effect of SiC whisker. Analysis of SEM and X-ray data revealed that whisker bridging in the crack wake and whisker pull-out mechanisms were the main mechanism for the R-curve behaviour.

  • PDF