• Title/Summary/Keyword: c/c composite

Search Result 3,896, Processing Time 0.03 seconds

Preparation of Composite Adsorbents by Activation of Water Plant Sludge and Phenolic Resin Mixtures

  • Myung, Heung-Sik;Kim, Dong-Pyo
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.154-157
    • /
    • 2001
  • Composite adsorbents were prepared by mixing water plant sludge with phenolic resin having the ratio of 1 : 1, 1 : 2, and 1 : 3 respectively, curing from $100^{\circ}C$ to $170^{\circ}C$ under $N_2$ atmosphere, and then activating with $N_2$ at $700^{\circ}C$. Thermal property, specific surface area and morphology of the composite adsorbents as well as their precursors were measured by TGA, BET and SEM respectively. Removal efficiency of the composite adsorbents to ${NH_4}^+$ and TOC was compared with those of commercial zeolite and activated carbon. The adsorbents presented very promising TOC removal efficiency of 98%, which was identical level to that of commercial activated carbon while they displayed removal efficiency, only 32%, of ${NH_4}^+$. Therefore, this composite adsorbent considered as the alternative material of commercial activated carbon, used as an expensive removal agent of organic substances and THM in water treatment plant and it also suggested a possibility of practical application in other processes.

  • PDF

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Lee, Su-Wan;U, Dong-Jin;Lee, Han-Yong;Jo, Seong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • Ni-SiC nano composite coatings were fabricated using electrodeposition technique with the aid of ultrasound. The properties of the nano composite were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. The results demonstrated that the microhardness of composite coatings under ultrasonic condition was improved significantly as compared to conventional electrodeposition techniques without ultrasound. The nano particles were found to be distributed homogeneously with reduced agglomeration. The synergistic combination of superior wear resistance and improved microhardness was found in ultrasonicated conditions to the Ni-SiC nano composite coatings.

  • PDF

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

FEA Study on Hoop Stress of Multilayered SiC Composite Tube for Nuclear Fuel Cladding (핵연료 피복관용 다중층 SiC 복합체 튜브의 Hoop Stress 전산모사 연구)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.435-441
    • /
    • 2014
  • Silicon carbide-based ceramics and their composites have been studied for application to fusion and advanced fission energy systems. For fission reactors, $SiC_f$/SiC composites can be applied to core structural materials. Multilayered SiC composite fuel cladding, owing to its superior high temperature strength and low hydrogen generation under severe accident conditions, is a candidate for the replacement of zirconium alloy cladding. The SiC composite cladding has to retain its mechanical properties and original structure under the inner pressure caused by fission products; as such it can be applied as a cladding in fission reactor. A hoop strength test using an expandable polyurethane plug was designed in order to evaluate the mechanical properties of the fuel cladding. In this paper, a hoop strength test of the multilayered SiC composite tube for nuclear fuel cladding was simulated using FEA. The stress caused by the plug was distributed nonuniformly because of the friction coefficient difference between the inner surface of the tube and the plug. Hoop stress and shear stress at the tube was evaluated and the relationship between the concentrated stress at the inner layer of the tube and the fracture behavior of the tube was investigated.

Milling Behaviors of Al-B4C Composite Powders Fabricated by Mechanical Milling Process (기계적 밀링 공정에 의해 제조된 Al-B4C 복합분말의 밀링 거동 연구)

  • Hong, Sung-Mo;Park, Jin-Ju;Park, Eun-Kwang;Lee, Min-Ku;Rhee, Chang-Kyu;Kim, Ju-Myoung;Lee, Jin-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 2012
  • In the present work, Al-$B_4C$ composite powders were fabricated using a mechanical milling process and its milling behaviors and mechanical properties as functions of $B_4C$ sizes ( $100{\mu}m$, 500 nm and 50 nm) and concentrations (1, 3 and 10 wt.%) were investigated. For achieving it, composite powders and their compacts were fabricated using a planetary ball mill machine and magnetic pulse compaction technology. Al-$B_4C$ composite powders represent the most uniform dispersion at a milling speed of 200 rpm and a milling time of 240 minutes. Also, the smaller $B_4C$ particles were presented, the more excellent compositing characteristics are exhibited. In particular, in the case of the 50 nm $B_4C$ added compact, it showed the highest values of compaction density and hardness compared with the conditions of $100{\mu}m$ and 500 nm additions, leading to the enhancement its mechanical properties.

Thermomechanical Analysis of Functionally Gradient Al-$SiC_{p}$ Composite for Electronic Packaging (전자패키지용 경사조성 Al-$SiC_{p}$ 복합재료의 열 . 기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.175-183
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with shan interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces and etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed fur the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the Al-$SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

A Study on the Machinability and Machining properties of Composite Ceramics$(iC-Al_2O_3)$ by EDM (복합 세라믹스$(iC-Al_2O_3)$의 방전가공특성에 관한 연구)

  • 윤병주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.61-68
    • /
    • 1995
  • TiC-Al2O3 composite ceramics has high hardness, high strength, high wear and corrosion resistance. Therefore, composite ceramics have been concerned significantly with some excellent properties and many functions as new industrial materials to the industry at large. In present research, experiments are carried out to obtain the machinability and machining properties by EDM. As a result, the most suitable machining conditions of TiC-Al2O3 composite ceramics was that the pulse duration is 10-60$mutextrm{s}$, the peak current is 10-16A. The machining speed and the wear of the tool electrode increased with the increase in peak current.

  • PDF

Microstructure and Mechanical Properties of Platelet Reinforced Mullite-Zirconia Composites (Platelet 강화 Mullite-Zirconia 복합체의 미세구조와 기계적 성질)

  • 박상엽
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.757-764
    • /
    • 1992
  • The platelet reinforced mullite-zirconia composites were prepared by pressurelss sintering with addition of Al2O3 or SiC platelets. The sintered density of 10 vol% Al2O3 platelet reinforced mullite-zirconia composite was 98.3% at 1700$^{\circ}C$. The fracture strength (290 MPa) and fracture toughness (4.9 MPa$.${{{{ SQRT { m} }}) in the Al2O3 platelet reinforced mullite-zirconia composite were enhanced compared with those of mullite-zirconia due to the crack deflection and load transfer effect of platelets. Whereas, the SiC platelet reinforced mullite-zirconia composite sintered at 1650$^{\circ}C$ showed relatively lower density (95.7%), fracture strength (170 MPa), and fracture toughness (3.9 MPa$.${{{{ SQRT { m} }} than the Al2O3 platelet reinforced mullite-zirconia composite.

  • PDF

Synthesization of WC/Co Composite Powders Doped V and Cr by Mechanochemical Method

  • Im, Hoo-Soon;Hur, Jah-Mahn;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.646-647
    • /
    • 2006
  • Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders$(WO_3,\;Co_3O_4,\;VC,\;Cr_3C_2$ and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and $Cr_3C_2$. The direct reduction and carburization of the mixed powders were carried at $900\;^{\circ}C$ for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at $1300{\sim}1360\;^{\circ}C$ for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.

  • PDF