• 제목/요약/키워드: butyrylcholinesterase

검색결과 64건 처리시간 0.028초

Butyrylcholinesterase Inhibitory Guaianolides from Amberboa ramosa

  • Khan Sher Bahadar;Haq Azhar-ul;Perveen Shagufta;Afza Nighat;Malik Abdul;Nawaz Sarfraz Ahmad;Shah Muhammad Raza;Choudhary Muhammad lqbal
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.172-176
    • /
    • 2005
  • Phytochemical investigation of the whole plant of Amberboa ramosa led to the isolation of six sesquiterpene lactones which could be identified as $8{\alpha}$-hydroxy-$11{\beta}$-methyl-$1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H,\;11{\alpha}H-guai-10(14)$, 4(15)-dien-6, 12-olide(2), $3{\beta},\;8{\alpha}-dihydroxy-11{\alpha}-methyl-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H,\;11{\beta}H-guai-10(14)$, 4(15)-dien-6, 12-olide (2), $3{\beta},\;4{\alpha},\;8{\alpha}-trihydroxy-4{\beta}(hydroxymethyl)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide (3), $3{\beta},\;4{\alpha},\;8{\alpha}-trihydroxy-4{\beta}-(chloromethyl)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide(4), $3{\beta},\;4{\alpha},\;dihydroxy-4{\beta}-(hydroxymethyl)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide(5), $3{\beta},\;4{\alpha}-dihydroxy-4{\beta}-(chloromethyl)-8{\alpha}-(4-hydroxymethacrylate)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide (6) by spectroscopic methods. All of them showed inhibitory potential against butyrylcholinesterase.

3-Phenethyl-2-phenylquinazolin-4(3H)-one isolated from marine-derived Acremonium sp. CNQ-049 as a dual- functional inhibitor of monoamine oxidases-B and butyrylcholinesterase

  • Jong Min Oh;Prima F. Hillman;Sang-Jip Nam;Hoon Kim
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.165-170
    • /
    • 2023
  • Isolation of the culture broth of a marine-derived Acremonium sp. CNQ-049 guided by HPLC-UV yielded compound 1 (3-phenethyl-2-phenylquinazolin-4(3H)-one), and its inhibitory activities against monoamine oxidases (MAOs), cholinesterases (ChEs), and β-secretase 1 (BACE1) were evaluated. Compound 1 was an effective selective MAO-B inhibitor with an IC50 value of 9.39 µM and a selectivity index (SI) value of 4.26 versus MAO-A. In addition, compound 1 showed a potent selective butyrylcholinesterase (BChE) inhibition with an IC50 value of 7.99 µM and an SI value of 5.01 versus acetylcholinesterase (AChE). However, compound 1 showed weak inhibitions against MAO-A, AChE, and BACE1. The Ki value of compound 1 for MAO-B was 5.22±1.73 µM with competitive inhibition, and the Ki value of compound 1 for BChE was 3.00±1.81 µM with mixed-type inhibition. Inhibitions of MAO-B and BChE by compound 1 were recovered by dialysis experiments. These results suggest that compound 1 is a dual-functional reversible inhibitor of MAO-B and BChE, that can be used as a treatment agent for neurological disorders.

Synthesis and in vitro Assay of New Triazole Linked Decursinol Derivatives Showing Inhibitory Activity against Cholinesterase for Alzheimer’s Disease Therapeutics

  • Park, Jung-Youl;Shin, Sujeong;Park, Kyoung Chan;Jeong, Eunju;Park, Jeong Ho
    • 대한화학회지
    • /
    • 제60권2호
    • /
    • pp.125-130
    • /
    • 2016
  • With the goal of developing Alzheimer’s disease therapeutics, we have designed and synthesized new triazole linked decursinol derivatives having potency inhibitory activities against cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)]. Since inhibition of cholinesterase (ChE) is still considered to be one of the most effective targets to treat AD patients, many new classes of ChE inhibitors have been synthesized. In an effort of identifying new type of cholinergic drug, decursinol derivatives 11-17 have been synthesized between decursinol and other biological interesting compounds such as lipoic acid, polyphenols, etc by using the click reaction and then evaluated their biological activities. Compound 12 (IC50 = 5.89 ± 0.31 mM against BuChE) showed more effective inhibitory activity against BuChE than galantamine (IC50 = 9.4 ± 2.5 mM). Decursinol derivatives can be considered a new class inhibitor for BuChE and can be applied to be a novel drug candidate to treat AD patients.

Development of Selective Butyrylcholinesterase Inhibitors Using (R)-Lipoic Acid-Polyphenol Hybrid Molecules

  • Woo, Yeun-Ji;Lee, Bo-Hyun;Yeun, Go-Heum;Kim, Hyun-Ju;Ko, Jang-Myoun;Won, Moo-Ho;Lee, Bong-Ho;Park, Jeong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2997-3002
    • /
    • 2011
  • A series of hybrid molecules between (R)-lipoic acid (ALA) and the acetylated or methylated polyphenol compounds were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibition activities were checked. The $IC_{50}$ values of all hybrid molecules for a BuChE inhibition were lower than those of the single parent compounds. Specifically, ALA-acetyl protected caffeic acid (11, ALA-AcCA) was shown as an effective inhibitor of BuChE ($IC_{50}=0.5{\pm}0.2\;{\mu}M$) and also had a great selectivity for BuChE over AChE (more than 800 fold). Inhibition kinetic study indicated that 11 is a mixed inhibition type. Its binding affinity ($K_i$) value to BuChE is $1.52{\pm}0.18\;{\mu}M$.

LDH/ AChE and LDH/BChE Ratios (Paralichthys olivaceus) as Biomarkers of Coastal Pollution on Coast of Korea.

  • Choi Jin-Ho;Kim Dong-Woo;Kim Chang-Mok;Yang Dong Beom
    • Fisheries and Aquatic Sciences
    • /
    • 제2권2호
    • /
    • pp.167-171
    • /
    • 1999
  • This study was designed to develop biomarkers of coastal pollution using biochemical indices of flounder (Paralichthys olivaceus) by changes in lactate dehydrogenase (LDH) activity in the serum and cholinesterase activities in brain membranes. For this purpose acetylcholiesterase (AChE) activity, butyrylcholinesterase (BChE) activity, LDH/AChE ratio and LDH/BChE ratio of cultured flounders at 5 different sites on the southern coast of Korea were compared to those of wild flounders caught in the Pohang, eastern coast of Korea as a control group. Relatively high LDH activities were measured in the serum of flounders cultured on the southern coast of Korea (0.101-0.145 unit) than those in the Pohang control group (0.093 unit). AChE activities were significantly low $(about\;10-20\%)$ in brain membranes of cultured flounders compared to those in the Pohang control group. The ratios of LDH/AChE and LDH/BChE were consistently higher $(136-178\%,\; 155-214\%)$ in cultured flounders than those of Pohang control group. Thus, we propose that the ratios of LDH/AChE and LDH/BChE in flounders could be applicable for the diagnosis of marine pollution.

  • PDF

Antioxidant and Cholinesterase Inhibitory Activities of Aqueous Extract from Rainbow Trout Oncorhynchus mykiss

  • Baek, Jae-Min;Yoon, Na-Young;Kim, Yeon-Kye;Lee, Doo-Seog;Yoon, Ho-Dong;Park, Jeung-Sook
    • Fisheries and Aquatic Sciences
    • /
    • 제14권2호
    • /
    • pp.89-92
    • /
    • 2011
  • We investigated the antioxidant and cholinesterase inhibitory activities of the aqueous extract of rainbow trout Oncorhynchus mykiss. The antioxidant activity of O. mykiss aqueous extract was determined by in vitro peroxynitrite scavenging activity and reducing power assays. The aqueous extract of O. mykiss showed potent peroxynitrite radical scavenging activity ($IC_{50}=0.12{\pm}0.001\;mg/mL$) and reducing power (absorbance=$0.47{\pm}0.001$) at the concentration of 1 mg/mL. The in vitro cholinesterase inhibitory activity of O. mykiss aqueous extract was examined using spectrophotometric analyses of acetyl- and butyrylcholinesterase. The aqueous extract of O. mykiss showed acetylcholinesterase inhibitory activity ($IC_{50}=1.61{\pm}0.13\;mg/mL$), but did not exhibit inhibitory activity against butyrylcholinesterase. These results suggest that O. mykiss possesses antioxidant and acetylcholinesterase inhibitory activities and provide scientific evidence for the health benefits of O. mykiss aqueous extract.

Isolation of specific butyrylcholinesterase (BuChE) inhibitors from the rhizome extract of Curcuma zedoaria

  • Kim, Young-Sup;Park, Eun-Kyung;Heor, Jung-Hee;Kim, Seong-Kie;Kim, Jung-Sook;Choi, Yeon-Hee;Seo, Jee-Hee;Lee, Bong-Ho;Choi, Byoung-Wook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.259.3-260
    • /
    • 2003
  • Alzheimer's disease(AD) is the most common cause of senile dementia in elderly people and the causes of AD are currently not fully understood. However, AD is generally understood to be associated with reduced levels of acetylcholine in the brain as cholinergic neurons are lost and cholinergic neurotransmission declines. There are growing evidences that two types of cholinesterase(ChE), i.e., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) both play important roles in the regulation of acetylcholine level in brain and thus may have a crucial role in the development and progression of AD. (omitted)

  • PDF

Garcinexanthone G, a Selective Butyrylcholinesterase Inhibitor from the Stem Bark of Garcinia atroviridis

  • Khaw, Kooi-Yeong;Murugaiyah, Vikneswaran;Khairuddean, Melati;Tan, Wen-Nee
    • Natural Product Sciences
    • /
    • 제24권2호
    • /
    • pp.88-92
    • /
    • 2018
  • The present study was undertaken to investigate the isolated compounds from the stem bark of Garcinia atroviridis as potential cholinesterase inhibitors and the ligand-enzyme interactions of selected bioactive compounds in silico. The in vitro cholinesterase results showed that quercetin (3) was the most active AChE inhibitor ($12.65{\pm}1.57{\mu}g/ml$) while garcinexanthone G (6) was the most active BChE inhibitor ($18.86{\pm}2.41{\mu}g/ml$). It is noteworthy to note that compound 6 was a selective inhibitor with the selectivity index of 11.82. Molecular insight from docking interaction further substantiate that orientation of compound 6 in the catalytic site which enhanced its binding affinity as compared to other xanthones. The nature of protein-ligand interactions of compound 6 is mainly hydrogen bonding, and the hydroxyl group of compound 6 at C-10 is vital in BChE inhibition activity. Therefore, compound 6 is a notable lead for further drug design and development of BChE selective inhibitor.

Development of Cholinesterase Inhibitors Using (a)-Lipoic Acid-benzyl Piperazine Hybrid Molecules

  • Kim, Beom-Cheol;Lee, Seung-Hwan;Jang, Mi;Shon, Min Young;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3322-3326
    • /
    • 2013
  • A series of hybrid molecules between (${\alpha}$)-lipoic acid (ALA) and benzyl piperazines were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibitory activities were evaluated. Even though the parent compounds did not show any inhibitory activity against cholinesterase (ChE), all hybrid molecules showed BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, ALA-1-(3-methylbenzyl)piperazine (15) was shown to be an effective inhibitor of both BuChE ($IC_{50}=2.3{\pm}0.7{\mu}M$) and AChE ($IC_{50}=30.31{\pm}0.64{\mu}M$). An inhibition kinetic study using compound 15 indicated a mixed inhibition type. Its binding affinity ($K_i$) value to BuChE is $2.91{\pm}0.15{\mu}M$.

Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity

  • Demmak, Rym Gouta;Bordage, Simon;Bensegueni, Abederrahmane;Boutaghane, Naima;Hennebelle, Thierry;Mokrani, El Hassen;Sahpaz, Sevser
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.115-121
    • /
    • 2019
  • Alzheimer's disease is a chronic neurodegenerative disorder with no curative treatment. The commercially available drugs, which target acetylcholinesterase, are not satisfactory. The aim of this study was to investigate the cholinesterase inhibitory activity of Solenostemma argel aerial part. Eight compounds were isolated and identified by NMR: kaempferol-3-O-glucopyranoside (1), kaempferol (2), kaempferol-3-glucopyranosyl($1{\rightarrow}6$)rhamnopyranose (3) p-hydroxybenzoic acid (4), dehydrovomifoliol (5), 14,15-dihydroxypregn-4-ene-3,20-dione (6), 14,15-dihydroxy-pregn-4-ene-3,20-dione-$15{\beta}$-D-glucopyranoside (7) and solargin I (8). Two of them (compounds 2 and 3) could inhibit over 50 % of butyrylcholinesterase activity at $100{\mu}M$. Compound (2) displayed the highest inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with a slight selectivity towards the latter. Molecular docking studies supported the in vitro results and revealed that (2) had made several hydrogen and ${\pi}-{\pi}$ stacking interactions which could explain the compound potency to inhibit AChE and BChE.