• 제목/요약/키워드: butyrate

검색결과 418건 처리시간 0.025초

A New Esterase, Belonging to Hormone-Sensitive Lipase Family, Cloned from Rheinheimera sp. Isolated from Industrial Effluent

  • Virk, Antar Puneet;Sharma, Prince;Capalash, Neena
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권7호
    • /
    • pp.667-674
    • /
    • 2011
  • The gene for esterase (rEst1) was isolated from a new species of genus Rheinheimera by functional screening of E. coli cells transformed with the pSMART/HaeIII genomic library. E. coli cells harboring the esterase gene insert could grow and produce clear halo zones on tributyrin agar. The rEst1 ORF consisted of 1,029 bp, corresponding to 342 amino acid residues with a molecular mass of 37 kDa. The signal P program 3.0 revealed the presence of a signal peptide of 25 amino acids. Esterase activity, however, was associated with a homotrimeric form of molecular mass 95 kDa and not with the monomeric form. The deduced amino acid sequence showed only 54% sequence identity with the closest lipase from Cellvibrio japonicus strain Ueda 107. Conserved domain search and multiple sequence alignment revealed the presence of an esterase/ lipase conserved domain consisting of a GXSXG motif, HGGG motif (oxyanion hole) and HGF motif, typical of the class IV hormone sensitive lipase family. On the basis of the sequence comparison with known esterases/ lipases, REst1 represents a new esterase belonging to the class IV family. The purified enzyme worked optimally at $50^{\circ}C$ and pH 8, utilized pNP esters of short chain lengths, and showed best catalytic activity with p-nitrophenyl butyrate ($C_4$), indicating that it was an esterase. The enzyme was completely inhibited by PMSF and DEPC and showed moderate organotolerance.

북극 지의류 Cladonia종에서 분리한 Caballeronia sordidicola균주 PAMC 26577의 유전체 서열 분석 (Genome sequence of Caballeronia sordidicola strain PAMC 26577 isolated from Cladonia sp., an Arctic lichen species)

  • 양정안;홍순규;오현명
    • 미생물학회지
    • /
    • 제53권2호
    • /
    • pp.141-143
    • /
    • 2017
  • Caballeronia sordidicola 균주 PAMC 26577은 다산 기지 근처에서 채집된 지의류인 Cladonia 종에서 분리되었다. Illumina 방식으로 분석한 균주 PAMC 26577의 초안 유전체 서열은 182개의 콘티그로 이루어졌으며, N50값은 159,226 염기쌍 길이에 해당하였다. 초안 유전체로 총 8,334,211 염기쌍을 확인하였으며, 59.4% G+C 함량을 나타냈다. 유전체는 단백질을 코드하지 않는 8개의 rRNA 유전자와 51개의 tRNA 유전자를 포함하였다. 8,065개의 단백질 유전자는 기본 대사 과정뿐 아니라 부탄올/부티르산 생합성, 폴리하이드록시부티르산 대사, serine cycle methylotrophy 및 글라이코겐 대사 유전자들을 가지고 있었다. 2백개 이상의 막 전달 단백질은, 인산화 전달 시스템과 TRAP 전달시스템이 부재하였다. PAMC 26577은 CRISPR 관련 서열 및 단백질이 없었으며, 파아지 유전자의 감염흔적으로 인한 11개의 파아지 관련 유전자를 찾아낼 수 있었다.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향 (Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter)

  • 전병승;이선미;김용환;채희정;상병인
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF

Effects of Cutting Length on Fermentation Characteristics and Aerobic Stability of Whole Crop Rice Silage

  • Lee, Seong Shin;Joo, Young Ho;Choi, Jeong Seok;Jeong, Seung Min;Paradhipta, Dimas Hand Vidya;Noh, Hyeon Tak;Kim, Sam Churl
    • 한국초지조사료학회지
    • /
    • 제41권3호
    • /
    • pp.155-161
    • /
    • 2021
  • This study was conducted to estimate the effect of different cutting lengths on fermentation characteristics and aerobic stability of whole crop rice (WCR) silage. The WCR was harvested at the yellow ripe stage (43.7%, DM), and then cut at 5 (R05), 10 (R10), and 20 cm (R20) of the theoretical length of cut with no cut WCR (R60). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 150 days in quadruplicates. The cutting lengths were not affected the chemical compositions of WCR silage (p > 0.05). The pH (p < 0.001) and concentration of ammonia-N (p = 0.022) in WCR silage were increased linearly with the increase of cutting length. The concentration of lactate had quadratic effect (p = 0.007), which was highest in R20 silage (p < 0.05). The concentration of acetate was increased linearly (p = 0.014), but the concentration of butyrate was decreased linearly (p = 0.033). The lactic acid bacteria count was decreased linearly (p = 0.017), and yeast count had quadratic effect (p = 0.009), which was the highest in R20 silage (p < 0.05). Aerobic stability had strong quadratic effect (p < 0.001), which was the highest in R20 silage (p < 0.05). In conclusion, R60 silage had highest pH by a linear increase of ammonia-N concentration and led to low aerobic stability. While R20 silage had the lowest pH by high lactate concentration and led to high aerobic stability.

Changes in ruminal fermentable characteristics and nutrient degradabilities of corn flake according to chamber type in Hanwoo: chamber type for corn flake in the rumen of Hanwoo

  • Ahn, Jun-Sang;Shin, Jong-Suh;Chung, Ki-Yong;Lim, Hwan;Choi, Jang-Gun;Kim, Ji-Hyung;Kwon, Eung-Gi;Park, Byung-Ki
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.695-706
    • /
    • 2018
  • This study was conducted to investigate the effect of a steam chamber type on the ruminal fermentable characteristics and nutrient degradabilities of corn flakes in Hanwoo. Three Hanwoo equipped with a ruminal fistula were used as experimental animals. There were two treatments: Corn flake using a steam chamber (CFSC, 1.0 atm - $100^{\circ}C$ 96 min) or corn flake using a pressurized steam chamber (CFPSC, 1.5 atm - $111^{\circ}C$ 12 min), respectively. In the in vitro trial, the ruminal pH was significantly lower in the CFPSC than in the CFSC (p < 0.01). The ammonia concentration was increased by 14.1% in the CFPSC compared to the CFSC (p < 0.05). The concentration of acetic acid was higher in the CFSC than in the CFPSC (p < 0.01). The concentrations of propionate, butyrate and total-VFA at 24 and 48 h were higher in the CFPSC than in the CFSC (p < 0.05). In the in situ trial, the degradability of dry matter was significantly higher in the CFSC than in the CFSC (p < 0.01). In addition, the degradabilities of starch and crude protein were significantly higher in the CFSC than in the CFSC (p < 0.01). Thus, the present results indicate that the pressurized steam chamber could be recommended to improve the feed value of corn flake according to the increase in the starch degradability and volatile fatty acid production.

Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle

  • Wann, Chinda;Wanapat, Metha;Mapato, Chaowarit;Ampapon, Thiwakorn;Huang, Bi-zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1153-1160
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effect of bamboo grass (Tiliacora triandra, Diels) pellet (Bamboo-Cass) supplementation on feed intake, nutrient digestibility, rumen microbial population and methane production in Thai native beef cattle. Methods: Four Thai native beef cattle bulls ($190{\pm}2kg$) were randomly allotted to four respective dietary treatments in a $4{\times}4$ Latin square design. Treatments were the varying levels of Bamboo-Cass supplementation at 0, 50, 100, and 150 g/head/d, respectively. Rice straw was fed ad libitum and the concentrate offered at 0.5% of body weight. Results: Under this experiment, the findings revealed that acetate and butyrate production were decreased (p<0.05), propionate increased (p<0.05), whilst ruminal $NH_3-N$ concentration was decreased (p<0.05) by supplementation of Bamboo-Cass at 150 g/head/d. Moreover, rice straw intake, and microbial population were linearly increased (p<0.05), while methane production was decreased (p<0.05). Conclusion: The results from the present study indicate that supplementation of Bamboo-Cass at 150 g/head/d significantly enhanced feed intake, decreased protozoa and increased bacterial population, rumen fermentation efficiency while decreased methane production. Therefore, Bamboo-Cass as a supplement is promising as a rumen enhancer in beef cattle fed on rice straw.

Saccharomyces cerevisiae partially to completely ameliorates the adverse effects of aflatoxin on the in vitro rumen fermentation of buffalo diet

  • Singh, Ram;Koo, Jin Su;Park, Sungkwon;Balasubramanian, Balamuralikrishnan
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.73-81
    • /
    • 2021
  • The current study investigated how Saccharomyces cerevisiae ameliorates the adverse effects of aflatoxin on in vitro rumen fermentation. In this study, five groups (T1: Control [basal feed]; T2: T1 + 300 ppb aflatoxin B1 [AFB1] and T3, T4, and T5: T2 with 0.05, 0.1, and 0.2% of S. cerevisiae, respectively) were prepared and incubated in vitro. The results revealed that truly degradable dry matter (TDDM), gas production (GP), microbial biomass production (MBP), truly degradable organic matter (TDOM), partitioning factor (PF), total volatile fatty acids (TVFA), acetate (A), propionate (P) and butyrate (B) values in the control group (T1) were higher (p < 0.05) than those of the AFB1 fed group (T2). The A : P ratio in the control group (T1) was reduced (p < 0.05) when compared to that of the T2 group. The TDDM, TDOM, GP, TVFA, A, P, and B values of T3, T4, and T5 improved with the increasing levels of S. cerevisiae; however, the values of group T5 were lower (p < 0.05) than that of the control. The values of MBP, A : P ratio and PF in group T5 were statistically similar to that of the control. It was concluded that the inclusion of S. cerevisiae (0.05 to 0.20%) to the AFB1 (300 ppb) contaminated feed partially to completely ameliorated the adverse effects of AFB1 on the in vitro rumen fermentation parameters.

Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives

  • Majewska, Malgorzata P.;Miltko, Renata;Belzecki, Grzegorz;Kedzierska, Aneta;Kowalik, Barbara
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1146-1156
    • /
    • 2021
  • Objective: The aim of the study was to compare the effect of two plant additives, rich in polyphenolic compounds, supplemented to sheep diets on microorganisms and carbohydrate fermentation in rumen. Methods: In the experiment, 6 ewes of the Polish Mountain breed were fitted with ruminal cannulas. Sheep were divided into three feeding groups. The study was performed in a cross-over design of two animals in each group, with three experimental periods (n = 6 per each group). The animals were fed a control diet (CON) or additionally received 3 g of dry and milled lingonberry leaves (VVI) or oak bark (QUE). Additionally, plant material was analyzed for tannins concentration. Results: Regardless of sampling time, QUE diet increased the number of total protozoa, as well as Entodinium spp., Diplodinium spp. and Isotrichidae family, while decreased bacterial mass. In turn, a reduced number of Diplodinium spp. and increased Ophryoscolex spp. population were noted in VVI fed sheep. During whole sampling time (0, 2, 4, and 8 h), the number of protozoa in ruminal fluid of QUE sheep was gradually reduced as opposed to animals receiving CON and VVI diet, where rapid shifts in the protozoa number were observed. Moreover, supplementing sheep with QUE diet increased molar proportions of butyrate and isoacids in ruminal fluid. Unfortunately, none of the tested additives affected gas production. Conclusion: The addition of VVI or QUE in a small dose to sheep diets differently affected rumen microorganisms and fermentation parameters, probably because of various contribution of catechins in tested plant materials. However, it is stated that QUE diet seems to create more favorable conditions for growth and development of ciliates. Nonetheless, the results of the present study showed that VVI and QUE additives could serve as potential natural modulators of microorganism populations and, consequently, carbohydrate digestion in ruminants.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.