• Title/Summary/Keyword: button mushrooms

Search Result 34, Processing Time 0.023 seconds

Good Agricultural Practices (GAP) analysis of hazardous materials in button mushroom (Agaricus bisporus) (GAP 양송이버섯 재배를 위한 위해물질 분석)

  • Lee, Byung-Eui;Kim, Tae-Hyun;Lee, Chan-Jung;Kim, Yong-Gyun;Lee, Byung-Joo
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.178-182
    • /
    • 2017
  • Good Agricultural Practices (GAP) is the world's leading quality certification for food safety. Since its introduction in Korea in 2006, its importance has been increasing every year. In particular, food safety issues are becoming increasingly important in society, and food safety is directly linked to health. The core of GAP certification is the traceability of the production, distribution, and consumption of hazardous materials, including pesticide residues, heavy metals, and microbes. In the present study, pesticides and heavy metals in button mushroom (Agaricus bisporus) and associated cultivation materials were analyzed. Tricyclozole (0.0144 ppm), flubendiamide (0.147 ppm), and trifloxystrobin (0.0340 ppm) were detected in rice straw and wheat straw, and carbendazim (0.0142 ppm) was detected in mixed wheat straw and rice straw medium. Lead and cadmium were detected at levels higher than the standard level in rice straw and mixed medium. However, lead and cadmium were not detected in mushrooms, and levels of arsenic and mercury were below the safety limit. Therefore, it was confirmed that the residual pesticides and heavy metals are safely managed in the investigated mushroom species. The results of the present study suggest that if these materials are adequately managed in the surroundings during cultivation, all hazardous materials can be managed during mushroom production.

Inhibition of Inducible Nitric Oxide Synthase by Agaricus bisporus Extract in RAW 264.7 Macrophages

  • Ahn, Ji-Yun;Lee, Hyun-Jung;Moon, Mi-Kyung;Kim, Su-Na;Ha, Tae-Youl
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.362-365
    • /
    • 2008
  • Agaricus bisporus, also known as white button mushroom, is one of the most popular mushrooms consumed in Korea. This mushroom contains high concentrations of flavanoids and exhibits antioxidant activity. In this study, we examined the effects of Agaricus bisporus ethanol extract (ABE) on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) protein levels were assessed in cells treated with $100\;{\mu}M$ LPS in the presence or absence of ABE. 0.5 mg/mL of ABE suppressed NO production significantly. Moreover, ABE inhibited levels of iNOS protein. Taken together, these results suggest that ABE exerts anti-inflammatory activity in LPS-induced inflammation in RAW 264.7 cells.

Pathological Properties of Cryptococcus pseudolongus on the Mycelia and Fruit Body of Lentinula edodes

  • Kwon, Hyuk Woo;Kim, Seong Hwan
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.173-182
    • /
    • 2021
  • Recently, Cryptococcus pseudolongus has been reported as a new pathogen of shiitake (Lentinula edodes). However, its pathological properties are not much known. To further understand its impact on the mushroom, we investigated the pathogen's interactions with the mycelium of shiitake, histopathological properties, host range, and sensitivity to diverse antifungal agents. The strain C. pseudolongus DUCC 4014 inhibited the mycelial growth of L. edodes strain (cultivar Sanjo 701ho) and caused browning in the mycelia confronted with the yeast on PDA. Spray inoculation of the yeast caused an abnormal browning symptom on the cap and/or gills of three shiitake cultivars grown on sawdust media in vinyl bags. Scanning electron microscopic images of the abnormally browned parts of shiitake fruit body illustrated that mushroom tissues were loosed and dispersed in the middle and edge of the cap and the arrangement of basidiospores borne on basidia in the gills was disturbed compared to those of normal shiitake fruit body. Spray inoculation also led to developing abnormal browning on the harvested fruit body, indicating C. pseudolongus could be a problem during mushroom storage. But the yeast was not able to induce abnormal browning on mushrooms of Pleurotus ferulae, Pleurotus fostreatus, and Agaricus bisporus. But it induced browning only on button mushroom (A. bisporus) when they were inoculated after wounding. Tests with 16 kinds of fungicides revealed that the cell growth of C. pseudolongus could be inhibited by benzalkonium chloride at MIC 7 ㎍/ml and benomyl at MIC 3 ㎍/ml.

Cultivation conditions for mass production of detoxifying bacterium Pseudomonas sp. HC1 of tolaasin produced by Pseudomonas tolaasii (버섯 세균성갈색무늬병원균(Pseudomonas tolaasii)의 독소(tolaasin) 저해균 Pseudomonas sp. HC1의 대량배양을 위한 최적 배양조건)

  • Lee, Chan-Jung;Yoo, Young-Mi;Han, Ju-Yeon;Jhune, Chang-Sung;Cheong, Jong-Chun;Moon, Ji-Won;Kong, Won-Sik;Suh, Jang-Sun;Han, Hye-Su;Cha, Jae-Soon
    • Journal of Mushroom
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Several bacteria are known as the causal agents of diseases of the cultivated button mushroom(Agaricus bisporus) and oyster mushroom(Pleurotus ostreatus). Pseudomonas tolaasii is the causal agent of brown blotch disease of commercial mushrooms. Pseudomonas sp. HC1 is a potent biological control agent to control brown blotch disease caused by Pseudomonas tolaasii. This can markedly reduce the level of extracellular toxins (i.e., tolaasins) produced by Pseudomonas tolaasii, the most destructive pathogen of cultivated mushrooms. To define the optimum conditions for the mass production of the Pseudomonas sp. HC1, we have investigated optimum culture conditions and effects of various nutrient source on the bacterial growth. The optimum initial pH and temperature were determined as pH 5.0 and $20^{\circ}C$, respectively. The optimal culture medium for the growth of tolaasin inhibitor bacterium was determined as follows: 0.9% dextrin, 1.5% yest extract, 0.5% $(NH_4)_2HPO_4$, 4mM $FeCl_3$, and 3.0% cysteine.

Effects of microorganism density and mushroom yields according to the sterilization of casing soils at the cultivation of button mushrooms (복토살균 조건에 따른 양송이 재배과정별 복토내 미생물 밀도 및 수량 특성)

  • Lee, Chan-Jung;Yoo, Young-Mi;Jhune, Chang-Sung;Cheong, Jong-Chun;Moon, Ji-Won;Kong, Won-Sik;Suh, Jang-Sun;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • This study was conducted to set the proper sterilization standards of casing soil for the stable production of button mushroom(Agaricus bisporus) from mushroom disease that occurs in infection of casing soil material. Changes of aerobic bacteria are increased as the longer grow-out period and sharply increased after second flushes. Fluorescence Psuedomonas showed high density at high sterilization temperature and $100^{\circ}C$ treatment has extremely high density at 30 min and 60 min in casing 22 days. Density of thermophilic actinomyces is sharply increase from casing with soil and the highest density at 22 days of casing and rapidly decrease after first flushes. Sterilizing temperature of casing soil affects quality and quantity of button mushroom. Treatment of 60 min, 90 min at $80^{\circ}C$ and 30 min at $100^{\circ}C$ produced the highest mushroom yields, especially mushrooms yields of A grads were the highest at treatment of 90 min at $80^{\circ}C$. Treatment of 60min at $100^{\circ}C$ products many yields, however, this treatment has low economic feasibility for its yields. Sterilizing temperature of casing soil has an effect on generating diseases and insect pests. Treatment of 60 min, 90 min at $80^{\circ}C$ and 30 min $100^{\circ}C$ showed lower incidence than the other treatment. Although treatment of 30 min at $100^{\circ}C$ causes low diseases and mushroom fly damage, it has low mushroom yields. Furthermore, although treatment of 60 min at $100^{\circ}C$ has high mushroom yields, it causes high diseases and mushroom fly damage. Therefore the best conditions for the sterilization of casing soils was 60 min and 90 min at $80^{\circ}C$.

A simple screening method using lignoceullulose biodegradation for selecting effective breeding strains in Agaricus bisporus (리그노셀룰로오스 생물학적 분해를 이용한 간단한 양송이 육종효율 우수 균주 선발)

  • Oh, Youn-Lee;Nam, Youn-Keol;Jang, Kab-Yeul;Kong, Won-Sik;Oh, Min ji;Im, Ji-Hoon
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.134-138
    • /
    • 2017
  • The white button mushroom, Agaricus bisporus, is commercially the fifth most important edible mushroom, accounting for the production of 9,732 tons of mushrooms in Korea in 2015. The genus Agaricus has been known for its potential to degrade lignocellulosic materials. Chemical analyses carried out during the cultivation of A. bisporus indicated that the cellulose, hemicellulose, and lignin fractions were changed preferentially for both vegetative growth and sexual reproduction. We screened A. bisporus strains for effective biodegradation through extracellular enzyme activity using cellulase, xylanase, and ligninolytic enzymes. The enzyme biodegradations were conducted as follows: mycelia of collected strains were incubated in 0.5% CMC-MMP (malt-mops-peptone), 0.5 Xylan-MMP, and 0.5% lignin-MMP media for 14 days. Incubated mycelia were stained with 0.2% trypan blue. Eighteen strains were divided into 8 groups based on different extracellular enzyme activity in MMP media. These strains were then incubated in sterilized compost and compost media for 20 days to identify correlations between mycelial growth in compost media and extracellular enzyme activity. In this study, the coefficient of determination was the highest between mycelial growth in compost media and ligninolytic enzyme activity. It is suggested that comparison with ligninolytic enzyme activity of the tested strains is a simple method of screening for rapid mycelial growth in compost to select good mother strains for the breeding of A. bisporus.

The characterization of breeding of a new cultivar Agaricus bisporus 'Danseok-1ho' (양송이 신품종 '단석1호'의 육성 및 특성)

  • Kang, Min-Gu;Jo, Woo-Sik;Kim, Woo-Hyun;Lee, Mun-Jung;Kwon, Tae-Ryong;Shin, Yong-Seub
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.175-179
    • /
    • 2018
  • The button mushroom 'A. bisporus' is the most commonly grown mushroom worldwide. The color of 'Agaricus bisporus' is white and brown. Recently, the consumption of brown button mushrooms has been increasing steadily. 'Danseok-1ho' was bred using the multi-spore random mating method and named after Danseok Mountain in Gyeongju, the region where 'A. bisporus' was first grown in Korea. The optimum temperature for mycelial growth was between $20^{\circ}C$ and $30^{\circ}C$, and the mushroom production temperature was between $15^{\circ}C$ and $20^{\circ}C$. The color and shape of 'Danseok-1ho' are medium brown and spherical, respectively. The width and thickness of the pileus are 45.1 mm and 23.5 mm, respectively. The hardness and L of chromaticity of 'Danseok-1ho' are $8,937g/{\Phi}5mm$ and 50.4, respectively. The incubation period is around 20 days and mushroom production takes about 18 days after casing. A typical characteristic of 'Danseok-1ho' is that the individual occurrence rate is high, so mushroom losses are low during harvest.

Analysis of research trends in mushroom science in North Korean journals (1978-2023) (북한 학술지에 게재된 버섯과학 연구동향 분석(1978~2023))

  • Woo-Sik Jo
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2023
  • In this study, research trends in mushroom science were examined using North Korean journal articles published in 1978-2023. Researchers in each field reviewed 450 papers and finally selected 429 papers, excluding 21 papers classified in different fields. The number of researchers was 872, and the number of authors per paper was 2.03. Kim Cheol-Hak published the most academic papers in the field of mushroom science in North Korea, with 12 papers. The number of research articles increased annually, from 7 in 1985, 12 in 1998, 11 in 2008, and 27 in 2020, and has especially increased rapidly since the mid-2010s. The study by mushroom type was as follows: 42 pine mushrooms (17.8 %), 25 oyster mushrooms (10.6 %), 23 Ganoderma sp. (9.8 %), 19 shiitake mushrooms (8.1 %), 17 button mushrooms (7.2 %), and 16 manna lichens (6.8 %). This study is considered meaningful in reviewing the research status and technology level in North Korea through analyzing North Korean academic journals in the field of mushroom science for the first time.

Damages and Developmental Characteristics of Fungus Gnat, Lycoriella ingenua (Diptera: Sciaridae) in Button Mushroom Cultivation (양송이버섯 재배에서의 긴수염버섯파리(Lycoriella ingenua)의 발달과 피해)

  • Lee, Byung-joo;Lee, Mi-Ae;Kim, Yong-Gyun;Lee, Kwang-won;Lee, Byung-eui;Seo, Geon-sik
    • Journal of Mushroom
    • /
    • v.13 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Mushroom sciarid fly Lycoriella ingenua (Dufour), syn. L. mali (Fitch) is one of the most common fly pests affecting the mushroom cultivation in Korea. This study was carried out to investigate the development at different temperatures and damages of L. ingenua in A. bisporus mushroom cultivation. Rearing of mushroom flies were carried out on mycelial culture in Petri dishes. The development of L. ingenua from egg to adult at the temperature of 16, 20, 24, $28^{\circ}C$ were 35.2, 25.8, 23.5, and 22.2 days, respectively. Adult flies invade mushroom farms and oviposit in freshly spawned compost. Damages are mainly caused by the larvae of 1-7 mm, which feed on growing mycelium and also developing stipes and caps of mushrooms. Adult flies spoil the appearance of the fruiting bodies, spread various fungal and bacterial disease, and transmit mites. The damages by mushroom flies increased without pest control causing yield loss of up to 27%.

Assessment of genetic diversity and population structure of commercial button mushroom (Agaricus bisporus) strains in Korea (한국의 상업적 양송이 균주의 유전적 다양성 및 집단 구조)

  • Lee, Hwa-Yong;An, Hye-jin;Oh, Youn-Lee;Jang, Kab-Yeul;Kong, Won-Sik;Ryu, Ho-jin;Chung, Jong-Wook
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.171-178
    • /
    • 2019
  • Agaricus bisporus is a functional food and among the most widely cultivated mushrooms in the world. In this study, we analyzed the genetic diversity and population structure of 23 Korean and 42 foreign A. bisporus cultivars using SSR (Simple sequence repeat) markers. Genetic diversity of A. bisporus cultivars was as follows: number of alleles was approximately 13; observed and expected heterozygosity were approximately 0.59 and 0.74, respectively; and polymorphic information content value was about 0.71. A. bisporus cultivars were divided into three groups using distance-based analysis. Genetic diversity of Group 2, which consisted of cultivars from various countries, was high. In addition, model-based subpopulations were divided into two, and the genetic diversity of Pop2 (Population 2), which had many cultivars, was high. The results of this study could be used in a breeding program for A. bisporus, such as the development of new genetic resources and securing diversity.