• Title/Summary/Keyword: butterfly-shaped damper

Search Result 2, Processing Time 0.013 seconds

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

An experimental and numerical study on the behavior of butterfly-dampers with shear and flexural mechanism

  • Seong‐Hoon Jeong;Ali Ghamari;Reneta Kotynia
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.29-43
    • /
    • 2024
  • In this paper, the behavior of an innovative metallic a butterfly-shaped link as damper with shear and flexural mechanism was investigated experimentally and numerically. The damper is directly attached to the diagonal member of the Concentrically Braced Frame (CBF) to prevent buckling of the braces. Since it is expected that nonlinear behavior of the system is limited to the dampers, the other parts of structures remind elastic that the damper can replaced easily after a severe earthquake. The experimental outcomes indicated that both types of dampers (with shear or flexural mechanism) pertain to stable hysteresis loops without any significant degradation in stiffness or strength. Comparing the dampers indicated that the shear damper has a greater ultimate strength (4.59 times) and stiffness (3.58 times) than flexural damper but a lower ductility (16%) and ultimate displacement (60%). Also, the shear damper has a considerable dissipation energy 14.56 times greater than flexural dampers where dissipating energy are affected by ultimate strength, stiffness and ultimate displacement. Also, based on the numerical study, the effect of main plate slenderness on the behavior of the damper was considered and the allowable slenderness was suggested to the design of the dampers. Numerical results confirmed that the flexural damper is more sensitive to the slenderness than shear damper. Accordingly, as the slenderness is less than 50 and 30, respectively, for, shear and flexural damper, no degradation in ultimate strength is realized. By increasing the slenderness, the maximum reduction of the ultimate strength, stiffness, and energy dissipation capacity reached by 16%, 7%, and 17% for SDB dampers whereas it is 3%, 33%, 20%, and 45% for MDB.