Organizations can experience serious financial and/or reputational losses if business activities are disrupted by an incident of information systems under the current business environment. The loss includes the intangible decline in brand image, customer separation, and the tangible loss such as decrease in business profits. Thus, it is necessary to take proactive initiatives by managing many kinds of risks an organization may have. Therefore, the enterprise risk management has been received a special attention by some advanced private companies, but not many public organizations. This paper describes an approach and some issues when the enterprise risk management was introduced in a domestic public organization.
잘 알려져 있는 것처럼 일반적인 베이즈 추정량(Bayes estimator)과 경험적 베이즈 추정량(empirical Bayes estimator)은 모수를 추정하는데 있어서 오차를 과다축소하는 단점을 가지고 있다. 따라서 이러한 단점을 극복하기 위하여 constrained 베이즈 추정량이 일차 적률과 이차 적률을 일치시키는 성질을 만족시키며 제안되었다. 또한 평균 제곱오차 함수와 같은 전통적인 손실함수에서는 추정의 정확성만을 고려하는 특징을 가지고 있기 때문에, 추정의 정확성과 정합성을 동시에 고려하는 균형 손실함수가 제안되었다. 이러한 이유로 인하여 균형손실 함수하에서의 제한적 베이즈 추정량의 활용이 손해 보험의 가격 산출에 제안되는 것은 타당하다. 그러나 대부분의 연구는 추정의 문제에만 집중하는 경향이 있으며. 이는 새롭게 제안되는 특정 손실함수하에서의 constrained 베이즈 추정량과 constrained empirical 베이즈 추정량의 베이즈 위험의 계산이 어렵다는 점에서 기인한다. 본 연구에서는 다양한 베이즈 추정량들에 대한 베이즈 위험을 서로 다른 두 손실함수하에서 비교하였으며, 그 대상은 자동차 보험 산업에서의 위험도 추정 분야이다. 또한 자동차 보험 산업의 실제 사고 데이터를 이용하여 새롭게 제안된 베이즈 추정량의 베이즈 위험을 비교함으로써 그 효용성을 입증하였다.
Purpose - Relationship between farm and county losses determines whether the county program provides too little, too much, or similar amount of assistance relative to the loss on an individual farm. A review of the literature finds limited analysis of the determinants of this relationship. This paper conducts such an analysis using farm-level yield data. Research design, data, and methodology - Farm-level yield data from Illinois and Kansas farm business management associations are used for to calculate the correlation between farm and county loss and the share of farm loss systemic with county loss, and also for the regression analysis. Results - Average share of farm loss systemic with the county loss lies between 42% and 68%. The correlation between farm and county yield/revenue deviation from expected value is statistically significant in all four models. The coefficient is positive, implying the higher the correlation, the larger the share of farm loss that is systemic with the county loss. Conclusions - The findings of this study are consistent with the existing literature which argues that county variability may not be closely associated with farm variability. The findings of this study thus raise questions about the efficacy of area yield and revenue insurance products in helping farmers manage their risk.
Recently, the needs and concerns for the power loss are increasing according to the energy conservation at the level of the national policies and power utilities's business strategies. Especially, the issue of the power loss is the main factor for the determining the electric pricing rates in the circumstances of the deregulation of electrical industry. However, because of the lacking of management for power loss load factors (LLF), it is difficult to make a calculation for the power loss and to make a decision for the electric rates. And loss factor(k-factor), which is a most important factor for calculation of the distribution power loss, has been used as a fixed value of 0.32 since the fiscal year 1973. Therefore, This study presents the statistical calculation methods of the loss factors classified by load types and seasons by using the practical data of 65 primary feeders which are selected by proper procedures. Based on the above the algorithms and methods, the optimal method of the distribution loss management classified by facilities such as primary feeders, distribution transformers and secondary feeders is presented. The simulation results show the effectiveness and usefulness of the proposed methods.
KIEE International Transactions on Power Engineering
/
제5A권2호
/
pp.109-115
/
2005
Recently, the needs and concerns regarding power loss have been increasing according to energy conservation at the level of the national policies and the business strategies of power utilities. In particular, the issue of power loss is the main factor for determining rates for electrical consumption in the deregulation of the electrical industry. However, because of the lack of management for power loss load factors (LLF) it is difficult to make a calculation for power loss and to make a decision concerning the electric rates. Furthermore, loss factor (k-factor) in Korea, which is of primary significance in the calculation of distribution power loss, has been used as a fixed value of 0.32 since the fiscal year 1973. Therefore, this study presents the statistical calculation methods of the loss factors classified by load types and seasons by using the practical data of 65 primary feeders that have been selected by appropriate procedures. Based on the above, the algorithms and methods, as well as the optimal method of the distribution loss management classified by facilities such as primary feeders, distribution transformers and secondary feeders is presented. The simulation results demonstrate the effectiveness and usefulness of the proposed methods.
정보시스템 운영리스크를 최소화하고, 장애시간 동안의 영업기회 손실비용 규모를 줄이기 위해서는 장애의 예방과 사전준비가 필요하다. 그런데 장애가 발생할 경우, 대부분의 기업에서는 장애발생 직후에 대응과 복구 조치를 취하고 있다. 프로그램 개발자나 시스템운영자들은 과거의 경험과 직관에 의존하여 장애를 관리하고 있을 뿐, 장애를 체계적으로 관리하고 사전에 예방하는 사례를 찾아보기가 힘든 실정이다. 본 논문은 정보시스템 운영리스크의 관점에서, 디스크 장애예방을 위한 피해저감모델의 개발에 초점을 맞추었다. 연구모델은 디스크장치에서 정보시스템 운영리스크가 발생하는 위험원인, 그리고 이러한 원인들을 사전에 점검하는 점검주기, 점검에 필요한 운영규정으로 구성된다. 또한 정보시스템 부문의 하드웨어 장애요인 중에서 가장 크게 나타나고 있는 디스크 장애에 대하여 피해저감모델을 적용함으로써 활용 가능성을 보여 준다.
본 연구는 Startup 기업들이 기업 경영과정에서 동원 가능한 자원을 확대하는지(Effectuation Model)를 정부가 제공하는 공공데이터를 가지고 기업 활동을 영위하는 스타트업 기업들을 대상으로 연구하였다. 연구 결과에 따르면, 부분적으로 Effectuation 모델이 창업 초기 기업들의 행태를 설명할 수 있는 가능성을 보여주고 있다. 따라서 이러한 연구결과에 기초한 정책적 시사점을 살펴보면, 앞으로 창업을 위한 정부 정책은 정교한 비즈니스 모델과 가상의 수익 모델에 기초한 기업 선정이 아니라, 현재는 다소 무모해보이더라도 도전적인 아이템이거나, 창업자의 지식과 가장 부합하는 영역의 창업을 적극 지원하는 제도로 방향을 맞출 필요가 있다. 다음으로, 적극적인 창업의 확산을 위해서는 업력, 혹은 창업 경험을 확산시킬 필요가 있다는 점이다. 이를 위해서는 창업자가 모든 금융 위험을 부담하는 형태를 가지고 있는 현재의 창업 관련 금융제도를 과감하게 전환하여 사회와 창업 관련 금융이관이 창업의 위험 일부를 공유하도록 함으로써, 창업의 위험을 줄여주는 방안을 더욱 적극적으로 검토할 필요가 있다.
Park, Jae-Hyeung;Kim, Yun-Jae;Park, Min-Kyu;Amino, Tadashi;Oh, Jae-Ho;Kim, Nam-Deog;Kim, Sang-Soo
한국정보디스플레이학회:학술대회논문집
/
한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
/
pp.413-416
/
2007
Motion-estimation/motion-compensation (ME/MC) provides superior motion picture quality but its huge computation load results in high cost. Impulsive driving is a cost-effective solution but it suffers from large flicker and brightness loss. Motion compensated impulsive driving technology has been developed to achieve high motion picture quality in a cost-effective implementation by combining ME/MC and impulsive driving. The key idea is to apply ME/MC or impulsive driving selectively according to the motion vector distribution of the incoming image sequence. In this paper, the description of the algorithm and the experimental results are provided.
Communications for Statistical Applications and Methods
/
제21권3호
/
pp.235-243
/
2014
Constrained Bayesian estimates overcome the over shrinkness toward the mean which usual Bayes and empirical Bayes estimates produce by matching first and second empirical moments; subsequently, a constrained Bayes estimate is recommended to use in case the research objective is to produce a histogram of the estimates considering the location and dispersion. The well-known squared error loss function exclusively emphasizes the precision of estimation and may lead to biased estimators. Thus, the balanced loss function is suggested to reflect both goodness of fit and precision of estimation. In insurance pricing, the accurate location estimates of risk and also dispersion estimates of each risk group should be considered under proper loss function. In this paper, by applying these two ideas, the benefit of the constrained Bayes estimates and balanced loss function will be discussed; in addition, application effectiveness will be proved through an analysis of real insurance accident data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.