• Title/Summary/Keyword: business knowledge base

Search Result 132, Processing Time 0.026 seconds

Building a Business Knowledge Base by a Supervised Learning and Rule-Based Method

  • Shin, Sungho;Jung, Hanmin;Yi, Mun Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.407-420
    • /
    • 2015
  • Natural Language Question Answering (NLQA) and Prescriptive Analytics (PA) have been identified as innovative, emerging technologies in 2015 by the Gartner group. These technologies require knowledge bases that consist of data that has been extracted from unstructured texts. Every business requires a knowledge base for business analytics as it can enhance companies' competitiveness in their industry. Most intelligent or analytic services depend a lot upon on knowledge bases. However, building a qualified knowledge base is very time consuming and requires a considerable amount of effort, especially if it is to be manually created. Another problem that occurs when creating a knowledge base is that it will be outdated by the time it is completed and will require constant updating even when it is ready in use. For these reason, it is more advisable to create a computerized knowledge base. This research focuses on building a computerized knowledge base for business using a supervised learning and rule-based method. The method proposed in this paper is based on information extraction, but it has been specialized and modified to extract information related only to a business. The business knowledge base created by our system can also be used for advanced functions such as presenting the hierarchy of technologies and products, and the relations between technologies and products. Using our method, these relations can be expanded and customized according to business requirements.

Efficient Knowledge Base Construction Mechanism Based on Knowledge Map and Database Metaphor

  • Kim, Jin-Sung;Lee, Kun-Chang;Chung, Nam-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.9-12
    • /
    • 2004
  • Developing an efficient knowledge base construction mechanism as an input method for expert systems (ES) development is of extreme importance due to the fact that an input process takes a lot of time and cost in constructing an ES. Most ES require experts to explicit their tacit knowledge into a form of explicit knowledge base with a full sentence. In addition, the explicit knowledge bases were composed of strict grammar and keywords. To overcome these limitations, this paper proposes a knowledge conceptualization and construction mechanism for automated knowledge acquisition, allowing an efficient decision. To this purpose, we extended traditional knowledge map (KM) construction process to dynamic knowledge map (DKM) and combined this algorithm with relational database (RDB). In the experiment section, we used medical data to show the efficiency of our proposed mechanism. Each rule in the DKM was characterized by the name of disease, clinical attributes and their treatments. Experimental results with various disease show that the proposed system is superior in terms of understanding and convenience of use.

  • PDF

RDB-based Automatic Knowledge Acquisition and Forward Inference Mechanism for Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.743-748
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database (RDB) and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert system. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently. and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

Intelligent Anti-Money Laundering Systems Development for the Korea Financial Intelligence Unit

  • Shin Kyung-Shik;Kim Hyun-Jung;Lee In-Ho;Kim Hyo-Sin;Kim Jae-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.294-300
    • /
    • 2006
  • This case study shows constructing the knowledge-based system using a rule-based approach for detecting transactions regarding money laundering in the Korea Financial Intelligence Unit (KoFIU). To better manage the explosive increment of low risk suspicious transactions reporting from financial institutions and to conjugate data converged into the KoFIU from various organizations, the adoption of a knowledge-based system is definitely required. We designed and constructed the knowledge-based system for anti-money laundering by committing experts of each specific financial industry co-worked with a knowledge engineer. The outcome of the knowledge base implementation shows that the knowledge-based system is filtering STRs in the primary analysis step efficiently and so has made great contribution to improve efficiency and effectiveness of the analysis process. It can be said that establishing the foundation of the knowledge base under the entire framework of the knowledge-based system for consideration of knowledge creation and management is indeed valuable.

  • PDF

Web-based Knowledge Management Model for Mid-Term and Long- Term Nuclear R&D Using Web Knowledge DataBase (웹 지식 데이터베이스를 활용한 원자력 중장기 연구개발 웹 기반 지식관리 모델)

  • 정관성;한도희
    • The Journal of Society for e-Business Studies
    • /
    • v.5 no.2
    • /
    • pp.143-150
    • /
    • 2000
  • This paper presents a methodology how to utilize management of research scheduling plan, processing, and results using Web Knowledge Database System, which integrates research knowledge management model under the Research & Development Environment. The content of this paper consists of description on utilization of the Web Knowledge Database System, sharing of the Research Knowledge through design data review, communications, and management of research knowledge flow during the Research & Development Period.

  • PDF

A knowledge Conversion Tool for Expert Systems

  • Kim, Jin-S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Most of expert systems use the text-oriented knowledge bases. However, knowledge management using the knowledge bases is considered as a huge burden to the knowledge workers because it includes some troublesome works. It includes chasing and/or checking activities on Consistency, Redundancy, Circulation, and Refinement of the knowledge. In those cases, we consider that they could reduce the burdens by using relational database management systems-based knowledge management infrastructure and convert the knowledge into one of easy forms human can understand. Furthermore they could concentrate on the knowledge itself with the support of the systems. To meet the expectations, in this study, we have tried to develop a general-purposed knowledge conversion tool for expert systems. Especially, this study is focused on the knowledge conversions among text-oriented knowledge base, relational database knowledge base, and decision tree.

A Development of Forward Inference Engine and Expert Systems based on Relational Database and SQL

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.49-52
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert systems. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently, and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

  • PDF

The method of using database technology to process rules of Rule-Based System

  • Zheng, Baowei;Yeo, Jeong-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.89-94
    • /
    • 2010
  • The most important of rule-base system is the knowledge base that determines the power of rule-base system. The important form of this knowledge is how to descript kinds of rules. The Rule-Base System (RBS) has been using in many field that need reflect quickly change of business rules in management system. As far, when develop the Rule-Based System, we must make a rule engine with a general language. There are three disadvantage of in this developed method. First, while there are many data that must be processed in the system, the speed of processing data will become very slow so that we cannot accept it. Second, we cannot change the current system to make it adaptive to changes of business rules as quickly as possible. Third, large data make the rule engine become very complex. Therefore, in this paper, we propose the two important methods of raising efficiency of Rule-Base System. The first method refers to using the Relational database technology to process the rules of the Rule-Base System, the second method refers to a algorithm of according to Quine McCluskey formula compress the rows of rule table. Because the expressive languages of rule are still remaining many problems, we will introduce a new expressive language, which is Rule-Base Data Model short as RBDM in this paper.

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

Data Mining and FNN-Driven Knowledge Acquisition and Inference Mechanism for Developing A Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.99-104
    • /
    • 2003
  • In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.

  • PDF