• Title/Summary/Keyword: burst control packet

Search Result 38, Processing Time 0.021 seconds

Performance Evaluation of Energy Saving in Core Router and Edge Router Architectures with LPI for Green OBS Networks (Green OBS 망에서 LPI를 이용하는 코어 및 에지 라우터 구조의 에너지 절감 성능 분석)

  • Yang, Won-Hyuk;Jeong, Jin-Hyo;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.130-137
    • /
    • 2012
  • In this paper, we propose core and edge router architectures with LPI(Low Power Idle) for reducing energy consumption in OBS networks. The proposed core router architecture is comprised of a BCP switch, a burst switch, line cards and sleep/wake controller for LPI. When the offered load of network is low, sleep/wake controller can change the state of the core router line card from active to sleep state for saving the energy after receiving network control packet. The edge router consists of a switch for access line card, a SCU and OBS edge router line cards. The LPI function in edge router line card is performed through network level control by network control packet, individually. Additionally, PHY/transceiver modules can transition active state to sleep state when burst assemble engine generates new bursts. To evaluate the energy saving performance of proposed architecture with LPI, the power consumption of each router is analyzed by using data sheet of commercial router and optical device. And, simulation is also performed in terms of sleep time of PHY/Transceiver through OPNET.

A Modified Random Early Detection Algorithm: Fuzzy Logic Based Approach

  • Yaghmaee Mohammad Hossein
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.337-352
    • /
    • 2005
  • In this paper, a fuzzy logic implementation of the random early detection (RED) mechanism [1] is presented. The main objective of the proposed fuzzy controller is to reduce the loss probability of the RED mechanism without any change in channel utilization. Based on previous studies, it is clear that the performance of RED algorithm is extremely related to the traffic load as well as to its parameters setting. Using fuzzy logic capabilities, we try to dynamically tune the loss probability of the RED gateway. To achieve this goal, a two-input-single-output fuzzy controller is used. To achieve a low packet loss probability, the proposed fuzzy controller is responsible to control the $max_{p}$ parameter of the RED gateway. The inputs of the proposed fuzzy controller are 1) the difference between average queue size and a target point, and 2) the difference between the estimated value of incoming data rate and the target link capacity. To evaluate the performance of the proposed fuzzy mechanism, several trials with file transfer protocol (FTP) and burst traffic were performed. In this study, the ns-2 simulator [2] has been used to generate the experimental data. All simulation results indicate that the proposed fuzzy mechanism out performs remarkably both the traditional RED and Adaptive RED (ARED) mechanisms [3]-[5].

A study on the receive buffer control schemes for bobile multimedia services (이동 멀티미디어 서비스를 위한 수신버퍼 제어에 관한 연구)

  • 이태훈;김용득
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.940-949
    • /
    • 1998
  • The paper proposes an effective mechanism hiring the adaptive buffer control schemes on the mobile seceiver's side that can resolve the problems of delay spikes caused by the handover process onthe cell boundaries when they transmit real-time moving images through the high speed wireless channels. to confirm the effectiveness of the proposed schemes, we have modeled the characteristics of the random errors on the wireless channels, the burst errors and that of the transmission delay by the handover. We also compared the rate of the delay-adaptation of the receive buffers caused by the delay and delay spikes. the comparison was done by testing the suggested schemes against the existing schemes by applying tehm to the packet delay model. We also could identify the noticable reduction of the casesof buffer delay and overflow compared with the conventional schemes, by applying the suggested algorithm to the video image compressed by H.263.

  • PDF

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

Transmission Rate Priority-based Traffic Control for Contents Streaming in Wireless Sensor Networks (무선 센서 네트워크에서 콘텐츠 스트리밍을 위한 전송율 우선순위 기반 트래픽제어)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3176-3183
    • /
    • 2011
  • Traffic and congestion control in the wireless sensor network is an important parameter that decides the throughput and QoS (Quality of Service). This paper proposes a transmission rate priority-based traffic control scheme to serve digital contents streaming in wireless sensor networks. In this paper, priority for transmission rate decides on the real-time traffic and non-real-time with burst time and length. This transmission rate-based priority creates low latency and high reliability so that traffic can be efficiently controlled when needed. Traffic control in this paper performs the service differentiation via traffic detection process, traffic notification process and traffic adjustment. The simulation results show that the proposed scheme achieves improved performance in delay rate, packet loss rate and throughput compared with those of other existing CCF and WCA.

Opportunistic Packet Scheduling and Media Access Control for Wireless LANs (무선 LAN을 위한 opportunistic 패킷 스케줄링 및 매체접근제어)

  • Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.191-197
    • /
    • 2008
  • For the efficient transmission of burst data in the time varying wireless channel, opportunistic scheduling is one of the important techniques to maximize multiuser diversity gain. In this paper, we propose a distributed opportunistic scheduling scheme for wireless LAN network. A proportional fair scheduling, which is one of the opportunistic scheduling schemes, is used for centralized networks, whereas we design distributed proportional fair scheduling (DPFS) scheme and medium access control with distributed manner. In the proposed DPFS scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed DPFS using extensive simulation and simulation results show that DPFS obtains higher network throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

A Study on The Performance of ATM Cell Transmission over Wireless Link (무선채널환경에서 ATM데이터의 전송성능분석 및 개선연구)

  • 이하철;이병섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.589-602
    • /
    • 1998
  • While ATM technology results in considerable advantages(less overhead, increased throughput) in an optical networks, It causes severe problems(single and burst error) when ATM is transmitted over an error-prone channel, such as wireless link. In this paper we describe our investigation on ATM over wireless network. we first evaluate performance of ATM data transmission over a wireless link. Secondly we analyze performance improvements of Forward Error Correction(FEC) or ARQ(Automatic Repeat reQuest) scheme applied to wireless ATM link and provide performance comparison between FEC and ARQ through the use of packet error rate and throughput. Lastly we suggest error control architecture to overcome the impact of the bit error characteristics of a wireless link on wireless ATM network.

  • PDF

Managed Object and Distributed Network Management Model in Open Interface of OBS Network (개방형 인터페이스가 적용된 OBS 망의 관리객체 및 분산 망 관리 모델)

  • Kwon TaeHyun;Kim ChoonHee;Cha YoungWook
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.449-456
    • /
    • 2005
  • Optical burst switching (OBS) overcomes the inefficient resource usage of optical circuit switching and minimizes the optical buffering requirement of optical packet switching. General switch management protocol (GSMP) is an open interface between a label switch and a controller, and it provides connection, configuration, performance, event management and synchronization. GSMP open interface in the OBS network allows the implementation of OBS switch to be simple by separating the data forward plane from the control plane. We defined managed objects to support connection, configuration, performance, and fault management for the management of OBS network in the GSMP open interface. We proposed the network management model, in which the above managed objects are distributed in a controller and an OBS switch according to network management functions. We verified the possibility of connection management using distributed network management model in the GSMP open interface of OBS network by implementing GSMP and network management functions with managed objects of OBS.