• Title/Summary/Keyword: burst collision

Search Result 13, Processing Time 0.02 seconds

Simultaneous Burst and Burst Control Packet Transmission Protocol for Optical Burst Switching Ring Networks

  • Park, Joon-Pyo;Lee, Man-Seop
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.116-119
    • /
    • 2007
  • In this letter, we design a collision resolution protocol for optical burst switching ring networks to avoid burst collision. We define the offset time condition for no burst transmission collision and manage the free time list of nodes for no burst reception collision. In order to improve the throughput, we use a fiber delay line, void-filling, and void-compression. This protocol does not require any additional procedures for bandwidth reservation such as centralized assignment of bandwidth, lightpath setup of WDM ring networks, or token capturing for the burst transmission. The simulation results show that the proposed protocol can achieve high throughput while saving 70% of wavelengths when compared to round robin with random selection, round robin with persistent, and round robin with non-persistent with only destination delay.

  • PDF

Burst Assembly Scheme based on SCM for Avoidance of Burst Collision in Optical Burst-Switched Networks (OBS 망에서 버스트 충돌 회피를 위한 SCM 기반의 버스트 생성 기법)

  • 이해정;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6B
    • /
    • pp.538-547
    • /
    • 2004
  • Optical Burst Switched (OBS) networks usually employ one-way reservation by sending a burst control packet (BCP) with a specific offset time, before transmitting each data burst frame (BDF). Therefore, The quality of service may be degraded because contentions may lead to loss of BDFs. Especially, this phenomenon becomes more serious when burst size is longer. This necessitates an effective method of prevention to avoid burst collision in nodes. OBS networks can employ several methods to avoid such burst losses. One is that burst size is cut short to reduce burst loss probability during scheduling time. In this paper, we evaluate the burst generation and transmission using Sub-Carrier Multiplexting (SCM) in OBS networks. We propose an appropriate burst assembly architecture and transmission scheme based on SCM in OBS networks. The performance of SCM in OBS networks is examined in terms of number of Sub-Carriers per wavelength, burst loss probability, throughput, and total bandwidth of an optical fiber.

Minimum Bandwidth Guarantee for Optical Burst Switching Networks (광 버스트 스위칭망에서 최소 대역폭 보장)

  • 오승훈;김영한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.59-66
    • /
    • 2003
  • We propose the novel optical burst switching scheme to guarantee a minimum bandwidth for multiple classes. To date, QoS studies on OBS network are capable of differentiating two classes, but have difficulties in providing a minimum bandwidth lot several classes because of lower classes' collision with the highest class bursts in the networks. To solve that problem, in our proposed scheme we assign time zones in a data channel for each class periodically, making one burst have top priority at least its zone. Also, the new burst assembling algorithm, as well as the way of managing data channel, is necessarily proposed to coordinate with the proposed OBS scheme. Through the evaluation, we show that the worst-case end-to-end delay is small enough and the received bandwidth of the lower classes is still assured regardless of the traffic load of the highest class.

Collision-Free Arbitration Protocol for Active RFID Systems

  • Wang, Honggang;Pei, Changxing;Su, Bo
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2012
  • Collisions between tags greatly reduce the identification speed in radio frequency identification (RFID) systems and increase communication overhead. In particular for an active RFID system, tags are powered by small batteries, and a large number of re-transmissions caused by collisions can deteriorate and exhaust the tag energy which may result in missing tags. An efficient collision-free arbitration protocol for active RFID systems is proposed in this paper. In this protocol, a new mechanism involving collision detection, collision avoidance, and fast tag access is introduced. Specifically, the pulse burst duration and busy-tone-detection delay are introduced between the preamble and data portion of a tag-to-reader (T-R) frame. The reader identifies tag collision by detecting pulses and transmits a busy tone to avoid unnecessary transmission when collision occurs. A polling process is then designed to quickly access the collided tags. It is shown that the use of the proposed protocol results in a system throughput of 0.612, which is an obvious improvement when compared to the framed-slotted ALOHA (FSA) arbitration protocol for ISO/IEC 18000-7 standard. Furthermore, the proposed protocol greatly reduces communication overhead, which leads to energy conservation.

A MAC Protocol for Efficient Burst Data Transmission in Multihop Wireless Sensor Networks (멀티홉 무선 센서 네트워크에서 버스트 데이타의 효율적인 전송을 위한 프로토콜에 관한 연구)

  • Roh, Tae-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.192-206
    • /
    • 2008
  • Multihop is the main communication style for wireless sensor networks composed of tiny sensor nodes. Until now, most applications have treated the periodic small sized sensing data. Recently, the burst traffic with the transient and continuous nature is increasingly introduced due to the advent of wireless multimedia sensor networks. Therefore, the efficient communication protocol to support this trend is required. In this paper, we propose a novel PIGAB(Packet Interval Gap based on Adaptive Backoff) protocol to efficiently transmit the burst data in multihop wireless sensor networks. The contention-based PIGAB protocol consists of the PIG(Packet Interval Gap) control algorithm in the source node and the MF(MAC-level Forwarding) algorithm in the relay node. The PIGAB is on basis of the newly proposed AB(Adaptive Backoff), CAB(Collision Avoidance Backoff), and UB(Uniform Backoff). These innovative algorithms and schemes can achieve the performance of network by adjusting the gap of every packet interval, recognizing the packet transmission of the hidden node. Through the simulations and experiments, we identify that the proposed PIGAB protocol considerably has the stable throughput and low latency in transmitting the burst data in multihop wireless sensor networks.

Contention-based Reservation MAC Protocol for Burst Traffic in Wireless Packet Networks

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • In this paper, centralized access control and slot allocation algorithm is proposed for wireless networks. The proposed algorithm is characterized by the contention-based reservation. In order to reduce the collision probability of reservation request, the base station calculates and broadcasts the transmission probability of reservation requests, and the wireless terminal transmits its reservation request with the received transmission probability. The scheduler allocates the uplink data slots based on the successful reservation requests. Simulation results show that the proposed algorithms can provide high channel utilization, and furthermore, maintains constant delay performance in the heavy traffic environment.

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

FPGA Implementation of a Burst Cell Synchroniser for the ATM-PON Upstream (ATM-PON의 상향에서 버스트 셀 동기장치의 FPGA 구현)

  • Kim, Tae-Min;Chung, Hae;Shin, Gun-Soon;Kim, Jin-Hee;Sohn, Soo-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.1-9
    • /
    • 2001
  • In the APON(ATM Passive Optical Network), the transmission of the upstream traffic is based on a TDMA(Time Division Multiple Access) method that an OLT(Optical Line Termination) permits ONUs(Optical Network Units) sending cells by allocating time slots. Because the upstream is not a streaming mode, the cell synchronizer has to be operated in the burst mode. Also, the cell phase monitor is required to prevent collisions between cells which are transmitted by multiple ONUs through a single optical fiber. In this paper, a TDMA burst cell synchroniser is implemented with the FPGA(Field Programmable Gate Array) being used in the APON based on G.983.1 for transmitting upstream cells. It has two main functions which are the upstream data recovery and the phase monitoring. The former is to recover the upstream data and clock in the OLT by seeking the preamble which is the overhead of the upstream time slot and by aligning the phase of the bit and cell with the system clock. The latter is to provide the information to the ONU to compensate for the equalization delay by monitoring continuously the phase difference between adjacent cells to avoid the cell collision on the upstream.

  • PDF

Performance Analysis of MAC Protocol for Packet Data Service in CDMA Based Mobile Communication Systems (CDMA 기반 이동통신 시스템에서의 패킷 데이터 서비스를 위한 MAC 프로토콜의 성능분석)

  • 박성수;조동호;송영재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.973-986
    • /
    • 1999
  • In this paper, we propose MAC protocol that consists of channel access mechanism and transmission mechanism to support effective wireless packet data service. In channel access mechanism, broadcast channel announces status information of random access channel, and mobile station tries random access based on status information. Also, mobile station has access probability to prevent collision increase due to transmission of short message. For effective transmission, mobile station changes transmission rate based on transmission queue status to adapt burst traffic characteristics. In restricted environments of transmission code and bandwidth, proposed protocol shows better performance than cdma2000 system.

  • PDF

Design of a Low-Power Turbo Decoder Using Parallel SISO Decoders (병렬 SISO 복호기에 의한 저전력 터보 복호기의 설계)

  • Lee, Hee-Jin;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.25-30
    • /
    • 2005
  • Turbo code is popularly used for the reliable communication in the presence of burst errors. Even if it shows good error performance near to the Shannon limits, it requires a large amount of memories and exhibits long latency. This paper proposes an architecture for the low power implementation of the Turbo decoder adopting the Max-Log-Map algorithm. In the proposed design, two SISO decoders are designed to operate in parallel, and a novel interleaver is designed to prevent the collision of memory accesses by two SISO decoders. Experimental results show that power consumption has been reduced by about 40% in the proposed decoder compared to previous Turbo decoders. The area overhead due to the additional interleaver controller is negligible.