• Title/Summary/Keyword: buried steel pipes

Search Result 33, Processing Time 0.02 seconds

Corrosion of Stainless Steel Pipes Buried in the Soils of Seoul Metropolitan During One Year (1년 동안 서울지역 토양에 매설된 스테인리스강의 부식)

  • Hyun, Youngmin;Kim, Heesan;Kim, Young-Ho;Jang, Hyunjung;Park, Youngbog;Choi, Youngjune
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.56-64
    • /
    • 2012
  • Factors affecting corrosion of stainless steels such as pH, oxidation and redox potential (ORP), soil resistivity, water content of soil, chloride ion concentration, bacteria activity, and corrosion potential have been investigated using soil analysis, bacterial analysis, surfacial analysis, and analysis of corrosion potentials of several stainless steels buried in 8 sites of Seoul metropolitan for one year. Corrosion potential was affected by occurrance of corrosion as well as bacteria activity but the behavior of corrosion potential with time is different depending on occurrance of corrosion and bacteria activity. The main factor affecting corrosion of stainless steels in soil is level of chloride ion concentration which is also a main factor affecting corrosion of stainless steels in chloride containing drinkable water. Furthermore, guideline of stainless steels in drinkable water is concluded to be applicable to that in soil by the results from surfacial analysis.

The Determination of Optimal Steel Pipe Wall Thickness Considering Ground Condition (지반 조건을 고려한 최적강관두께의 결정)

  • Park, Jaesung;Oh, Bungdong;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.11-15
    • /
    • 2008
  • By considering manufacture and economic factor, the steel pipes have been employed for water supply pipeline with large diameter. The standard to decide a thickness of pipe was provided by the waterworks standard (Ministry of Construction & Transportation, 1992) in South Korea. However, there was no the systematic standard to confirm a thickness of pipe in it. Thus, it should be able to apply to unsuitable the Stewart formula for the buried pipe to design for an optimum thickness of pipe. In order to meet revised the waterworks standard (The Ministry of Environment, 1997), it has been considered both the ground condition and all of the stresses to compute a thickness of pipe. As a results, a method is suggested to determine thickness of pipe after comparing and validating the obtained results with the established results from the Stewart formula.

  • PDF

Behavior of girth-welded buried steel pipes under external pressure (원주 용접된 압력 매설강관의 거동 분석)

  • Jeon, Juntai;Lee, Chinhyung;Chang, Kyongho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents finite element (FE) analyses to clarify the effects of external pressure on the residual stresses in a girth-welded steel pipe. At first, FE simulation of the girth welding process is carried out to obtain the weld-induced residual stresses employing sequentially coupled three-dimensional (3-D) thermo-mechanical FE formulation. Then, 3-D elastic-plastic FE analyses incorporating the residual stresses and plastic strains obtained from the preceding FE simulation are performed to investigate the residual stress behavior in the girth-welded pipe under external pressure. The FE analysis results show that the hoop compressive stresses induced by the external pressure significantly alter the hoop residual stresses in the course of the mechanical loading.