• Title/Summary/Keyword: buried steel pipes

Search Result 33, Processing Time 0.024 seconds

An application of the tubular roof construction method for Seoul subway tunnel construction (서울지하철 터널의 T.R.c.M. 공법 적용 사례 연구)

  • Jie, Hong-Keun;You, Kwang-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.345-356
    • /
    • 2004
  • Open-cut method has been widely used to construct underground structures, but it causes several problems such as traffic congestion and public resentment resulting from severe construction noise and ground settlement. In many cases, it is very difficult to build underground structures safely due to the unknown locations of buried facilities such as water pipes, drainage pipes, gas pipes and high-pressure cable conduits etc. Also in open-cut method, moving buried facilities causes additional cost and extension of construction period. Therefore, this paper is to present a case study in which Tubular Roof construction Method (T.R.c.M.), a newly developed construction method for underground structures using slab steel pipes and PC wall trench, is applied for the construction of a subway tunnel in Seoul. As a result, it is found that T.R.c.M. is a construction method by which tunnels can be constructed safely without any effect on the surrounding environment and traffic flow due to the minimized construction vibration and noise.

  • PDF

Development of Curve Fitted Equations for Dynamic Behavior of Various Buried Pipelines (각종 매설관의 동적거동에 대한 곡선적합식의 개발)

  • Kim, Sung-Ban;Jeong, Jin-Ho;Joeng, Du-Hwoe;Lee, Kwang-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.25-33
    • /
    • 2006
  • The purpose of this study is to develop the curve fitted equations for practicality and actual calculation during seismic performance evaluation of buried pipelines. Curve fitting for strain curve according to the wavelength of the seismic wave was produced using the non-linear least square method and the equations with the best results was suggested. In addition, a degree and coefficient of polynomial fitting equation needed to use curve fitted equation were identified. Interpreting process during the test of resistance of earthquake of buried pipelines with various end boundary conditions were provided through example questions. The results of this study were used to conduct a dynamic response analysis and a seismic performance evaluation of concrete, steel, and FRP pipes with various end boundary conditions.

Preliminary Experiment for Analysis of Guided Wave Behaviors in Buried Steel Pipes (지반에 매립된 배관에서의 유도초음파 거동 해석을 위한 기초 실험)

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae;Kim, Jae-Min;Kim, Young-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.673-675
    • /
    • 2011
  • 본 연구에서는 매립 구간의 길이가 유도초음파 신호 강도에 미치는 영향을 분석하였다. 유도초음파 모드 해석을 통해 가진 모드와 주파수를 결정하였으며, 유도초음파의 가진 및 수진은 경사각 입사 방식의 Pitch-Catch 법을 이용하였다. 또한, 비 매립된 배관에서 유도초음파 신호를 획득하여, 이를 기준으로 매립된 배관에서 획득한 유도초음파 신호를 분석하였다. 실험 결과 매립 구간의 길이가 유도초음파의 신호 강도에 매우 큰 영향을 미칠 뿐만 아니라, 매립 구간의 길이와 신호 강도의 변화가 선형 비례적인 관계를 보이지 않는다는 것을 확인할 수 있었다.

  • PDF

Application of Ground Penetrating Radar (GPR) coupled with Convolutional Neural Network (CNN) for characterizing underground conditions

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.467-474
    • /
    • 2024
  • Monitoring and managing the condition of underground utilities is crucial for ground stability. This study aims to determine whether images obtained using ground penetrating radar (GPR) accurately reflect the characteristics of buried pipelines through image analysis. The investigation focuses on pipelines made from different materials, namely concrete and steel, with concrete pipes tested under various diameters to assess detectability under differing conditions. A total of 400 images are acquired at locations with pipelines, and for comparison, an additional 100 data points are collected from areas without pipelines. The study employs GPR at frequencies of 200 MHz and 600 MHz, and image analysis is performed using machine learning-based convolutional neural network (CNN) techniques. The analysis results demonstrate high classification reliability based on the training data, especially in distinguishing between pipes of the same material but of different diameters. The findings suggest that the integration of GPR and CNN algorithms can offer satisfactory performance in exploring the ground's interior characteristics.

Effect of Bacteria in Soil on Microbiologically Influenced Corrosion Behavior of Underground X65 Pipeline (토양 속 박테리아가 지하매설 X65 배관의 미생물 부식 거동에 미치는 영향)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Kim, Woosik;Kim, Cheolman;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.168-179
    • /
    • 2022
  • Microbiologically Influenced Corrosion (MIC) occurring in underground buried pipes of API 5L X65 steel was investigated. MIC is a corrosion phenomenon caused by microorganisms in soil; it affects steel materials in wet atmosphere. The microstructure and mechanical properties resulting from MIC were analyzed by OM, SEM/EDS, and mapping. Corrosion of pipe cross section was composed of ① surface film, ② iron oxide, and ③ surface/internal microbial corrosive by-product similar to surface corrosion pattern. The surface film is an area where concentrations of C/O components are on average 65 %/16 %; the main components of Fe Oxide were measured and found to be 48Fe-42O. The MIC area is divided into surface and inner areas, where high concentrations of N of 6 %/5 % are detected, respectively, in addition to the C/O component. The high concentration of C/O components observed on pipe surfaces and cross sections is considered to be MIC due to the various bacteria present. It is assumed that this is related to the heat-shrinkable sheet, which is a corrosion-resistant coating layer that becomes the MIC by-product component. The MIC generated on the pipe surface and cross section is inferred to have a high concentration of N components. High concentrations of N components occur frequently on surface and inner regions; these regions were investigated and Na/Mg/Ca basic substances were found to have accumulated as well. Therefore, it is presumed that the corrosion of buried pipes is due to the MIC of the NRB (nitrate reducing bacteria) reaction in the soil.

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

Stress and Strain Distribution of Gas Pipe According to Buried Depth (매설심도에 따른 가스 배관의 응력 변형 특성)

  • Cho, Jinwoo;Choi, Bonghyuck;Cho, Wonbeom;Kim, Jinman;Hong, Seongkyeong;Jeong, Sekyoung;Kim, Joonho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, improvement of materials and technologies for the manufacturing of gas pipe has it possible to reduce the buried depth. Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline(about 50cm deeper). Therefore, this study investigated the effect of various buried depth(0.8m, 1.0m, 1.2m) on the stress and strain distribution of gas pipe. Numerical analysis and field tests were carried out with API 5L steel gas pipes. From the results, it can be suggested that the change of buried depth would not significantly affect the stress and strain distribution of gas pipe.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 지중매설 GFRP관의 구조적 거동 조사)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.

Assessment of Structural Safety of Buried Water Mains (매설관의 구조적 안전성 평가에 관한 연구)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.151-164
    • /
    • 2007
  • Criteria for rehabilitation priority are discussed to evaluate structural stability of deteriorated water transport and transmission pipes, in this study. For the purposes, safety factor is introduced and estimated by measuring tensile strength and by analyzing stress caused by the internal-external loads working on buried pipe body. Related informations are surveyed and collected under various conditions in the fields by digging out and the structural stability is assessed. In the evaluation results of structural safety, it is shown that steel pipe is more affected by external load than internal load. The average external load is estimated as $53.7kg/cm^2$ and total hoop stress is estimated by $2676.5kg/cm^2$. Also, Poisson effect into longitudinal direction due to internal and external loads is most influential on hoop stress. The calculated safety factors of hoop stress are ranged from 0.7 to 5.2 with average value of 2.1, considering a bending stress to longitudinal direction. The decision of rehabilitation priority by safety factors show that structural safety of CIP sample 1(S1) was assessed at the lowest order with safety factor value, 0.7 and that of DI sample 15(S15) was evaluated as the most stable in structural aspect.