• Title/Summary/Keyword: buried pipeline

Search Result 219, Processing Time 0.027 seconds

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions on failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Numerical Analysis of Peak Uplift Resistance of Buried Pipeline in Sand and Soft Clay (연약 점토와 사질토에 묻힌 파이프라인의 극한 인발저항력 산정)

  • Kwon, Dae-Hean;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.227-232
    • /
    • 2017
  • Subsea pipelines are one of the most important structures used to transport fluids such as oil and natural gas in offshore environments. The uplift behavior of the pipeline caused by earthquakes and buoyancy can result in a pipeline failure. The objective of this study is to examine the peak uplift resistance through parametric studies with numerical modeling by PLAXIS 3D Tunnel. The effects of the embedment ratio and pipe diameter were first examined for uplift resistance in sand and soft clay conditions. Then the length of geogrid layers and the number of geogrid layers were examined in terms of ability to resist uplift behavior.

A Experimental Study of Flexible Rubber Packing Materials of Precast Concrete Pipeline (프리캐스트 콘크리트 관로용 가요성 지수재의 실험적 연구)

  • Kim, Tae-Hyup;Kim, Kwang-Soo;Hong, Sung-Nam;Park, Sun-Kyu;Cho, Cheong-Hwi;Lee, Jun-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.90-93
    • /
    • 2006
  • Buried pipeline is a indispensable factor of leading smoothly a society as a primary role. Recently, as a matter of convenience of construction and the economical purpose, the use of Precast Concrete products quickly increased. But there was various damage forms in a part of joint of Precast Concrete buried pipeline. The purpose of this study is to propose the new type of the flexible rubber packing material (EF) which could resist a permanent deformation of the ground or an earthquake and to investigate its safety together with effectiveness as conducting experiment and analysis.

  • PDF

Analysis of DC Traction Stray Current Interference on Buried Pipelines (지하철 누설전류가 도시가스 배관에 미치는 영향 해석)

  • Lee H.G.;Ha T.H.;Ha Y.C.;Bae J.H.;Kim D.K.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1376-1378
    • /
    • 2004
  • When an underground pipeline runs parallel with DC traction systems, it suffers from DC traction interference. Because the train is fed by the substation through the overhead wire and return current back to the substation via the rails. If these return rails are poorly insulated from earth, DC current leak into the earth and can be picked up by nearby pipeline. It may bring about large-scale accidents even in cathodically protected systems. In this paper we analyze the cathodic protection systems of buried pipelines and DC traction stray current influence on it using the simulation software CatPro. We can discuss the problems and mitigation of DC traction interference for protected pipeline.

  • PDF

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Comparative Analysis on the Causes and Frequency of Recent Gas Pipelines Accidents in Major Overseas Countries (해외 주요국에서의 최근 가스배관 사고의 원인과 빈도의 비교 분석)

  • Kim, Dae-Woong;Bae, Kyung-Oh;Shin, Hyung-Seop;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • Natural gas is an explosive fluid and can cause severe human/material damage when buried high-pressure pipeline is failure, and there have been reported cases of considerable human life damage to actual buried pipeline failure. In domestic cases, the length and duration of pipeline operating are short due to rapid growth. Therefore, it is a fact that the establishment of effective accident data is insufficient for the cause of the accident. In order to systematically construct an accident database, the operation history of natural gas pipeline is longer than domestic, and the cause and frequency analysis of recent natural gas pipeline related accidents occurred in overseas major countries with a long pipeline network was conducted. Then, after grasping the trend of occurrence frequency by incident cause, we tried to establish the foundation for securing the stability of the domestic high-pressure gas transport pipeline network.

Influence of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines

  • Bi, Kaiming;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.663-680
    • /
    • 2012
  • Previous major earthquakes revealed that most damage of the buried segmented pipelines occurs at the joints of the pipelines. It has been proven that the differential motions between the pipe segments are one of the primary reasons that results in the damage (Zerva et al. 1986, O'Roueke and Liu 1999). This paper studies the combined influences of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines. The heterogeneous soil deposits surrounding the pipelines are assumed resting on an elastic half-space (base rock). The spatially varying base rock motions are modelled by the filtered Tajimi-Kanai power spectral density function and an empirical coherency loss function. Local site amplification effect is derived based on the one-dimensional wave propagation theory by assuming the base rock motions consist of out-of-plane SH wave or combined in-plane P and SV waves propagating into the site with an assumed incident angle. The differential axial and lateral displacements between the pipeline segments are stochastically formulated in the frequency domain. The influences of ground motion spatial variations, local soil conditions, wave incident angle and stiffness of the joint are investigated in detail. Numerical results show that ground motion spatial variations and local soil conditions can significantly influence the differential displacements between the pipeline segments.

A Study on the Safety Improvement of Buried Pipeline Using Scoring Model (Scoring Model을 이용한 매설배관 안전성 개선에 관한 연구)

  • Son, Myoung-Duck;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.175-185
    • /
    • 2017
  • As the gas is manufactured, handled and used more often due to the continuous increase of gas, the related facility gets expanded and more complex causing small and big accident which causes economic loss including damage for humans and materials. The gas pipeline, the most common gas facility, has the biggest risk of accidents. Especially in the urban area and densely populated areas, the accident due to the high pressure pipeline may cause even more serious damages. To prevent the accident caused by the buried pipeline, it is required for the relevant authorities to evaluate the damage and risk of the whole pipeline system effectively. A risk is usually defined as a possibility or probability of an undesired event happening, and there is always a risk even when the probability of failure is set low once the pipeline is installed or under operation. It is reported that the accident caused by the failure of the pipeline rarely happens, however, it is important to minimize the rate of accidents by analyzing the reason of failure as it could cause a huge damage of humans and property. Therefore, the paper rated the risk of pipelines with quantitative numbers using the qualitative risk analysis method of the Scoring Model. It is assumed that the result could be effectively used for practical maintenance and management of pipelines securing the safety of the pipes.