• Title/Summary/Keyword: buoyancy bag

Search Result 10, Processing Time 0.02 seconds

Controller design for depth control of vehicle under seawater (수중운동체의 심도제어를 위한 제어기 설계)

  • ;;Yoon, Kang Sup;Lee, Man Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.24-34
    • /
    • 1996
  • In ordaer to hold an underwater vehicle at a certain depth, buoyancy that acts on the underwater vehicle can be modulated. In this research, buoyancy that could control depth of underwater vehicle is generated by a buoyancy bag. Solenoid valves are operated by pulse with modulation(PWM) method. State equation, in consideration of the volume of buoyancy bag, pressure inside bag, and dynamic of the underwater vehicle, is derived. This system is very unstable, inculdes modelling error and nonlinearity. In depth control system, maintanance of performance is required., anainst vatiation of systerm parameter and operating depth, and designed. Through the computer simulation, performance is comparerd for each controllers.

  • PDF

Performance Analysis on the Reduction of Drowning Accident Using Buoyancy Bag (부력가방의 익사사고 저감성능 분석)

  • Choi, Kwang Won;Cho, Woncheol;Lee, Taeshik
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.33-39
    • /
    • 2010
  • This study is to reduce the rate of drowning accident by using of buoyancy bag. People are exposed to the high risk of drowning accident when they have water leisure activities due to the lack of safety mind-set and shortage of safety products. In case of drowning accident, the rescue action is normally depending on the other people's assistance. Therefore, rescue activities which relyn the people doesn't improve the ratio of survival in the drowning accidents. The submarine specialists should use the buoyancy products to rescue the people in the drowning accident. The citizen can carry portable buoyancy product in the automobile as well as by hands anywhere and anytime. It will be effective rescue tool to save his/her life in the emergency. In addition, it will contribute to rescue other's life because it can be used immediately. There are 3 positive characteristics on the buoyancy bag. First, it is convenience. Documents and other stuffs can be kept in the bag. Second is safety. The material of buoyancy is placed in the inner of the bag. It is possible to float the person whose weight is 90 kg. Lastly, it is durability. It can be used long-term because the outer of the bag is made of anti-water material and anti-water zipper. As a result of performance analysis, it is evident that the buoyancy bag can be used to rescue the people in the drowning accident as a indirect rescue tool compared with the current other rescue products. It is recommended that the design of outer box and performance of buoyancy are required to be improved in order to contribute more to rescue people in the accident.

  • PDF

A controller comprising tail wing control of a hybrid autonomous underwater vehicle for use as an underwater glider

  • Joo, Moon G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.865-874
    • /
    • 2019
  • A controller for an underwater glider is presented. Considered underwater glider is a torpedo-shaped autonomous underwater vehicle installing adjustable buoyancy bag and movable battery in it. The controller is composed of an LQR controller to maintain zigzag vertical movement for gliding and two PD controllers to control elevator/rudder angles. The LQR controller controls the pumping speed into the buoyancy bag and the moving speed to locate the battery. One of the PD controller controls the elevator angle to assist the LQR controller, and the other controls the rudder angle to adjust the direction of the underwater glider. A reduced order Luenberger observer is adopted to estimates the center of gravity of the glider and the buoyancy mass that are essential but cannot be measured. Mathematical simulation using Matlab proved the validity of the proposed controller to obtain better performance than conventional LQR only controller under the influence of sea current.

Depth Control of Underwater Glider by Lyapunov's Direct Method (리야푸노프 직접법에 의한 수중 글라이더의 깊이 제어)

  • Joo, Moon Gab
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.105-112
    • /
    • 2017
  • To control the depth of an underwater glider, a control method by using Lyapunov's direct method is proposed. The underwater glider has a torpedo-shape hull, a movable mass in the hull, and an inflatable buoyancy bag in the hull, but doesn't have large wings that increase the lift force for the conventional underwater glider. The control laws to adjust the position of the movable mass and the mass of the inflatable buoyancy bag are derived. For a selected speed and an angle of attack, we simulated the operation of the underwater glider using Matlab/Simulink. The efficiency of the proposed controller is shown in the fact that the control effort is active during only a short period of time when the zigzag trajectory is changed from downward to upward or vice versa.

Depth Control of Underwater Glider Using Reduced Order Observer (축소 차원 관측기를 사용한 수중 글라이더의 깊이 제어)

  • Joo, Moon-Gab;Woo, Him-Chan;Son, Hyeong-Gon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.311-318
    • /
    • 2017
  • A reduced order observer is developed for depth control of a hybrid underwater glider which combines the good aspects of a conventional autonomous underwater vehicle and a underwater glider. State variables include the center of gravity of the robot and the weight of the buoyancy bag, which can not be directly measured. By using the mathematical model and available information such as directional velocities, accelerations, and attitudes, we developed a Luenberger's reduced order observer to estimate the center of gravity and the buoyancy weight. By simulations using Matlab/Simulink, the efficiency of the proposed observer is shown, where a LQR controller using full state variables is adopted as a depth controller.

Depth Control of a Hybrid Underwater Glider in Parallel with Control of Horizontal Tail Wing (수평 꼬리 날개의 제어를 병행하는 하이브리드 수중 글라이더의 깊이 제어)

  • Joo, Moon Gab
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • An underwater glider is a type of autonomous unmanned vehicle and it advances using a vertical zig-zag glide. For this purpose, the position of an internal battery is regulated to control its attitude, and the amount of water in a buoyancy bag is regulated to control the depth. Underwater glider is suitable for a long-distance mission for a long time, because the required energy is much smaller than the conventional autonomous unmanned vehicle using propeller propulsion system. In this paper, control of horizontal tail wing is newly added to the conventional battery position and buoyancy control. The performance of the proposed controller is shown through Matlab simulation.

A study on the improvement of fishing system using miniaturized nets for anchovy boat seine to reduce the fleet size (선단축소형 권현망 어구를 적용한 조업시스템 개선 방안)

  • Young-Su AN;Bo-Yeon KIM;Youn-Hyoung CHO;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.3
    • /
    • pp.207-216
    • /
    • 2024
  • This study conducted a marine experiment to improve the fishing system using miniaturized nets for anchovy boat seine to reduce the fleet size. As a result, the miniaturized net for anchovy boat seine properly opened the entrance of the bag net using the buoyancy of the flotation for position indication and the setting force of the ground rope without operating a separate fish detecting boat by attaching a large flotation at the entrances of the inside wing net and the bag net. This also enabled an operation type where the entrance of the bag net is confirmed using a flotation for position indication from a netting boat. The time and the number of people used for net casting and net hauling in the marine experiment were average of five minutes and 25-30 minutes, respectively, and 23-30 people for the existent net, while for the miniaturized large-scale net were average of three minutes and 23-25 minutes, respectively, and 19-25 people. This indicates that the operation time was shortened, the number of fish detecting boats was reduced by one boat, and the number of people for fishing work was decreased by four or five people due to the improvement of fishing operation system according to the reduction of fishing net size. As a result of measuring the shaft horsepower during net towing, the maximum net towing horsepower was 250 HP in comparison to the maximum RPM of the engine (1,200 RPM), indicating that the legal horsepower of 250 HP is enough to conduct net towing and the competitiveness of fishing using the net for anchovy boat seine is ensured through operation cost reduction.

A Field Experiment for the Determination of Drift Characteristics of Person-in-Water (인체의 표류특성 추정을 위한 현장실험)

  • 강신영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • A field experiment of the leeway of person-in-water(man with wetsuit) was conducted during October 1997∼ April 1998. The experiment area was northeast side of Cho Do island in Pusan. The college students whose weight ranges 60∼87 kg, height 170∼178 cm were actually drifted for the experiment. The person-in-water wore 5 mm neoprene diving wetsuit to prevent heat loss of the body. The current near the target was measured using a colored vinyl bag. To compare the result a scuba diver equipped with scuba gear and with his BC(buoyancy compensator) fully inflated was drifted alongside. The average leeway speed of man with wetsuit and that of scuba diver were about 0.4 percent and 1.3% of the 10 m wind speed above the water respectively.

  • PDF

A Model Experiment on the Basic Efficiency of Midwater Rope Trawl Net (로프 트롤 그물의 기본성능에 관한 모형실험)

  • Yae, Young-Hee;Lee, Byong-Gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-213
    • /
    • 1993
  • A model experiment on a midwater rope trawl net which is used in the North Pacific to catch alaska pollack is carried out in the circulating tank to examine the basic efficiency of the net. The prototype is the net used by M/S Hanil(1, 179GT, 2, 700PS), a Korean trawler. The model net was made according to the Tauti's Similarity Law of Fishing Gear in 1/100 scale by considering the condition of the tank. To measure the basic efficiency of the standard model net, the vertical opening and width between some points marked on the net were measured, and the hydrodynamic resistance were determined. Then the constructive conditions of the net were varied as follows and the factors were measured again to compare the efficiency of those nets with that of the standard net(A-1 type) front weight multiplied 1.5 times: A-2 type. buoyancy and depressing force multiplied 1.7 times: A-3 type. front weight multiplied 1.5 times on A-3 type: A-4 type. depressors rigged at ground rope: B type. cod-end stuffed with cashmylon wad: C type. The results obtained can be summarized as follows: 1. The vertical opening at the center of head rope was steeply decreased with the flow velocity increasing and the vertical opening H(m) can be expressed in H=1.2v super(-1.2)(v : flow velocity in m/sec). The width of the net varied a little when the flow velocity was over 0.4m/sec, and the width of net mouth showed about 37% of the distance between the fore tips of net pendant. The shape of net mouth was almost a circle at 0.2m/sec and then steeply flatted elliptically with the flow velocity increasing and the area of mouth S(m super(2)) can be expressed in S=(1.65-2.3v)$\times$10 super(-2). The hydrodynamic resistance of the net increased almost linearly with the flow velocity increasing and the resistance R(kg) can be expressed in R=3.2$\times$d/l$\times$abv. where d/l denotes the mean of d(diameter of netting twine) and l(length of a leg in a mesh) from wing tip to the end of bag-net except cod-end on the side pannel, and a denotes the strectched circumference of the net at the fore end of a meshed part and b the stretched length of the whole net from wing tip to the end of cod-end. 2. In the condition-varied nets, the vertical opening of head rope showed some increase in every type net except the C type, and the increase showed the greatest in the B type by 30~54%, whereas it showed decrease in the C type by 5~10%. Variation of the area of net mouth showed almost the same tendency as the vertical opening and the increase showed the greatest in the B type by 20%, whereas it showed decrease in the C type by 12%. Hydrodynamic resistance showed some increase in every type compared with the standard net, and the rate of increase indicated 5~10% in the A-2, A-3 and A-4 type, 22% in the B type and 3% in the C type.

  • PDF