• Title/Summary/Keyword: buoy collocated data

Search Result 6, Processing Time 0.02 seconds

Derivation of SST using MODIS direct broadcast data

  • Chung, Chu-Yong;Ahn, Myoung-Hwan;Koo, Ja-Min;Sohn, Eun-Ha;Chung, Hyo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.638-643
    • /
    • 2002
  • MODIS (MODerate-resolution Imaging Spectroradiometer) onboard the first Earth Observing System (EOS) satellite, Terra, was launched successfully at the end of 1999. The direct broadcast MODIS data has been received and utilized in Korea Meteorological Administration (KMA) since february 2001. This study introduces utilizations of this data, especially for the derivation of sea surface temperature (SST). To produce the MODIS SST operationally, we used a simple cloud mask algorithm and MCSST algorithm. By using a simple cloud mask algorithm and by assumption of NOAA daily SST as a true SST, a new set of MCSST coefficients was derived. And we tried to analyze the current NASA's PFSST and new MCSST algorithms by using the collocated buoy observation data. Although the number of collocated data was limited, both algorithms are highly correlated with the buoy SST, but somewhat bigger bias and RMS difference than we expected. And PFSST uniformly underestimated the SST. Through more analyzing the archived and future-received data, we plan to derive better MCSST coefficients and apply to MODIS data of Aqua that is the second EOS satellite. To use the MODIS standard cloud mask algorithm to get better SST coefficients is going to be prepared.

  • PDF

Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula (한반도 서해 연안 해역에서의 해양 부이 관측 수온과 위성 마이크로파 관측 해수면온도의 비교)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.555-567
    • /
    • 2018
  • In order to identify the characteristics of sea surface temperature (SST) differences between microwave SST from GCOM-W1/AMSR2 and in-situ measurements in the western coast of Korea, a total of 6,457 collocated matchup data were produced using the in-situ temperature measurements from marine buoy stations (Deokjeokdo, Chilbaldo, and Oeyeondo) from July 2012 to December 2017. The accuracy of satellite microwave SSTs was presented by comparing the ocean buoy data of Deokjeokdo, Chilbaldo, and Oeyeondo stations with the AMSR2 SST data more than five years. The SST differences between the microwave SST and the in-situ temperature measurements showed some dependence on environmental factors, such as wind speed and water temperature. The AMSR2 SSTs were tended to be higher than the in-situ temperature measurements during the daytime when the wind speed was low ($<6ms^{-1}$). On the other hand, they showed positive deviation increasingly as the wind speed increased for nighttime. In addition, increasing tendency of SST differences was related to decreasing sensitivity of microwave sensors at low temperatures and data contamination by land. A monthly analysis of the SST difference showed that unlike the previous trend, which was known to be the largest in winter when strong winds were blowing, the SST difference was largest in summer in Deokjeokdo and Chilbaldo buoy stations. This seemed to be induced by differential tidal mixing at the collocated matchup points. This study presented problems and limitations of the use of microwave SSTs with high contribution to the SST composites in the western coastal region off the Korean peninsula.

Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometer­observed Wind Speed (NSCAT) over the East (Japan) Sea

  • Park, Kyung-Ae;Kim, Kyung-Ryul;Kim, Kuh;Chung, Jong-Yul;Conillor, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.173-184
    • /
    • 2003
  • Major differences between wind speeds from atmospheric pressure maps (Na wind) and near­surface wind speeds derived from satellite scatterometer (NSCAT) observations over the East (Japan) Sea have been examined. The root­mean­square errors of Na wind and NSCAT wind speeds collocated with Japanese Meteorological Agency (JMA) buoy winds are about $3.84\;ms^{-1}\;and\;1.53\;ms^{-1}$, respectively. Time series of NSCAT wind speeds showed a high coherency of 0.92 with the real buoy measurements and contained higher spectral energy at low frequencies (>3 days) than the Na wind. The magnitudes of monthly Na winds are lower than NSCAT winds by up to 45%, particularly in September 1996. The spatial structures between the two are mostly coherent on basin­wide large scales; however, significant differences and energy loss are found on a spatial scale of less than 100 km. This was evidenced by the temporal EOFs (Empirical Orthogonal Functions) of the two wind speed data sets and by their two­dimensional spectra. Since the Na wind was based on the atmospheric pressures on the weather map, it overlooked small­scale features of less than 100 km. The center of the cold­air outbreak through Vladivostok, expressed by the Na wind in January 1997, was shifted towards the North Korean coast when compared with that of the NSCAT wind, whereas NSCAT winds revealed its temporal evolution as well as spatial distribution.

Error Characteristics of Satellite-observed Sea Surface Temperatures in the Northeast Asian Sea (북동아시아 해역에서 인공위성 관측에 의한 해수면온도의 오차 특성)

  • Park, Kyung-Ae;Sakaida, Futoki;Kawamura, Hiroshi
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • An extensive set of both in-situ and satellite data regarding oceanic sea surface temperatures in Northeast Asian seas, collected over a 10-year period, was collocated and surveyed to assess the accuracy of satellite-observed sea surface temperatures (SST) and investigate the characteristics of satellite measured SST errors. This was done by subtracting insitu SST measurements from multi-channel SST (MCSST) measurements. 845 pieces of collocated data revealed that MCSST measurements had a root-mean-square error of about 0.89$^{\circ}C$ and a bias error of about 0.18$^{\circ}C$. The SST errors revealed a large latitudinal dependency with a range of $\pm3^{\circ}C$ around 40$^{\circ}N$, which was related to high spatial and temporal variability from smaller eddies, oceanic currents, and thermal fronts at higher latitudes. The MCSST measurements tended to be underestimated in winter and overestimated in summer when compared to in-situ measurements. This seasonal dependency was discovered from shipboard and moored buoy measurements, not satellite-tracked surface drifters, and revealed the existence of a strong vertical temperature gradient within a few meters of the upper ocean. This study emphasizes the need for an effort to consider and correct the significant skin-bulk SST difference which arises when calculating SST from satellite data.

Oceanic Skin-Bulk Temperature Difference through the Comparison of Satellite-Observed Sea Surface Temperature and In-Situ Measurements (인공위성관측 해수면온도와 현장관측 수온의 비교를 통해 본 해양 피층-표층 수온의 차이)

  • Park, Kyung-Ae;Sakaida, Futoki;Kawamura, Hiroshi
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.273-287
    • /
    • 2008
  • Characteristics of skin-bulk sea surface temperature (SST) differences in the Northeast Asia seas were analyzed by utilizing 845 collocated matchup data between NOAA/AVHRR data and oceanic in-situ temperature measurements for selected months from 1994 to 2003. In order to understand diurnal variation of SST within a few meters of the upper ocean, the matchup database were classified into four categories according to day-night and drifter-shipboard measurements. Temperature measurements from daytime drifters showed a good agreement with satellite MCSST (Multi-Channel Sea Surface Temperature) with an RMS error of about $0.56^{\circ}C$. Poor accuracy of SST with an rrns error of $1.12^{\circ}C$ was found in the case of daytime shipboard CTD (Conductivity, Temperature, Depth) measurements. SST differences between MCSST and in-situ measurements are caused by various errors coming from atmospheric moist effect, coastal effect, and others. Most of the remarkable errors were resulted from the diurnal variation of vertical temperature structure within a few meters as well as in-situ oceanic temperatures at different depth, about 20 cm for a satellite-tracked drifting buoy and a few meters for shipboard CTD or moored buoy. This study suggests that satellite-derived SST shows significant errors of about ${\pm}3^{\circ}C$ in some cases and therefore it should be carefully used for one's purpose on the base of in-depth understanding of skin-bulk SST difference and vertical temperature structure in regional sea.

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.