• Title/Summary/Keyword: bulk specific gravity

Search Result 40, Processing Time 0.024 seconds

RUBBER INCLUSION EFFECTS ON MECHANICAL PROPERTIES OF RUBBER-ADDED COMPOSITE GEOMATERIAL

  • Kim, Yun-Tae;Gang, Hyo-Seb
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.129-134
    • /
    • 2010
  • This paper investigates effects of rubber inclusion on the strength and physical characteristics of rubber.added composite geomaterial (CGM) in which dredged soils, crumb rubber, and bottom ash are reused for recycling. Several series of test specimens were prepared at 5 different percentages of rubber content (i.e. 0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil) and three different percentages of bottom ash content (i.e. 0%, 50% and 100% by weight of the dry dredged soil). The mixed soil specimens were subjected to unconfined compression test and elastic wave test to investigate their unconfined compressive strengths and small strain properties. The values of bulk unit weight of the CGM with bottom ash content of 0% and 100% decrease from 14kN/$m^3$ to 11kN/$m^3$ and 15kN/$m^3$ to 12kN/$m^3$, respectively, as rubber content increases, because the rubber had a specific gravity of 1.13. The test results indicated that the rubber content and bottom ash content were found to influence the strength and stress-strain behavior of CGM. Overall, the unconfined compressive strength, and shear modulus were found to decrease with increasing rubber content. Among the samples tested in this study, those with a lower rubber content exhibited sand-like behavior and a higher shear modulus. Samples with a higher rubber content exhibited rubber-like behavior and a lower shear modulus. The CGM with 100% bottom ash could be used as alternative backfill material better than CGM with 0% bottom ash. The results of elastic wave tests indicate that the higher rubber content, the lower shear modulus (G).

  • PDF

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF

Mechanization of Pine Cone Harvest(I) -Physical Properties of Korean Pine Cones- (잣 수확의 기계화 연구(I) -잣 송이의 물리적 특성-)

  • Kang, W.S.;Kim, S.H.;Lee, J.S.;Lee, G.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.9-16
    • /
    • 1994
  • 135 and 136 pine cones were sampled from age class of II to VI Korean pine trees for the study of their physical properties in 1991 and 1992, respectively. The length, width, weight, volume, and the largest projected area of cones were measured, and the specific gravity, apparent volume ratio sphericity, and roundness were calculated. Regression analysis were performed for the weight, volume, and projected area to the cone length and width. The length, and major and minor diameters of the cone stalks were measured and analyzed. 1. The range of the length of cone stalks was 0 to 47.3mm. The average length of stalks were 9mm ('91) and 10mm('92), respectively. Cross section of the stalks was ellipse with average major and minor diameters of 9.1mm and 10.1mm, and 8.6 and 8.7mm in 91 and 92, respectively. 2. The length of pine cones distributed from 8cm to 17cm and the average length were about 13cm('91, '92). The width varied from 5cm to 9.5cm and the average width were 6.7cm('91) and 6.9cm('92). The ratios of the length to the width were 0.56('91) and 0.65('91) and the shape of the cones were found to be ellipse with minor diameter of 1/2 to 2/3 of the major diameter. 3. The roundnesses and sphericity of cones were 0.74 and 0.75('91), 0.63 and 0.67('92), respectively. The average of the largest projected area of cones were $85.3cm^2$('91) and $93.1cm^2$('92) and the criterion areas were $71.0cm^2$ and $74.5cm^2$, respectively. 4. Cone weights were from 83g to 467g('91 and '92) and averages were 186g('91) and 220g('92). The average specific gravities were 0.89 and 0.96('91 and '92). The true volumes were $212cm^2$('91) and $230cm^2$('92), and the average bulk volume was $321cm^2$('91, '92). The average apparent volume ratios of cones were 35% ('91) and 28% ('92), respectively. 5. The weight and the volume were proportional to the length of the cone multiplied by the width squred and the largest projected area was proportional to the length multiplied by the width of cones.

  • PDF

Characterization of interfacial chemistry on the coal bottom ash (저회의 계면 화학적 특성 규명)

  • Lee, Ki-Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.92-97
    • /
    • 2011
  • Landfill is the main treatment method for bottom-ash because it has not only an irregular particle size and ingredients but also not proper recycling treatment. The aim of this study is to raise recycling rate of bottom-ash(nonplasticity pulverulent) and for the purpose of alternatives of clay to investigate the properties of Bottom-ash (B/A)-Hard Clay (H/C) bodies with controlled interfacial chemistry properties. After investigating the sedimentation height of suspensions with controlled pH, it was discovered that there was no hetero-polar aggregation for mixed slips because hard clay and bottom-ash had similar interfacial chemistry properties. Also, bulk density, water absorption, and microstructure properties of each pellet was observed that made by silp casting method and manufactured at $50^{\circ}C$ intervals between $1000{\sim}1250^{\circ}C$. As a result, dispersed slip of clay and bottom ash are possible for slip casting and plastic forming process because they exhibit Bingham plastic behavior. Products that made by slip with dispersed clay and bottom ash are not only suitable for KS L 4201 and KS L 1001 at $1250^{\circ}C$ but it is also possible to apply for ceramic and sanitary ware because specific gravity was about 15 % lighter than general ceramic materials.

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.

Cohesion and Internal Friction Angle Estimated from Brazilian Tensile Strength and Unconfined Compressive Strength of Volcanic Rocks in Jeju Island (제주도 화산암의 압열인장강도와 일축압축강도로부터 추정된 점착력과 내부마찰각)

  • Moon, Kyoungtae;Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.2
    • /
    • pp.17-28
    • /
    • 2020
  • With respect to the tensile strength of volcanic rocks in Jeju Island, a comparative study was conducted using the existing research results and the test results performed in this study. In addition, the characteristics and effectiveness of the cohesion and internal friction angle estimated from the Brazilian tensile strength and unconfined compressive strength of Jeju volcanic rocks were investigated. As results, the Brazilian tensile strength of Jeju volcanic rocks was closely related to absorption, and decreased exponentially as the absorption increased. It was confirmed that the internal friction angle was closely related to the ratio of unconfined compressive strength to Brazilian tensile strength (σc / σt), and increased logarithmically as the ratio of σc / σt increased. In addition, the ratios of σc / σt of Jeju volcanic rocks were in the range of 5~20 depending on the magnitude of internal friction angle. In the case of cohesion, it was closely related to the absorption and Brazilian tensile strength. The cohesion exponentially decreased as the absorption increased, such as the relation between the Brazilian tensile strength and absorption. It was confirmed that there was a linear relation between the cohesion and Brazilian tensile strength.

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.

An Analysis of Archaeological Chemistry on the Low-grade Celadons Excavated at Noksan dong, Busan in Korea (부산 녹산동 조질청자의 고고화학적 분석)

  • Nam, Kyung Min;Kim, Gyu-Ho
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.345-358
    • /
    • 2018
  • The purpose of this study is to analyze the characteristics of low-grade 12th-century celadons, which were excavated from a kiln site in Noksan-dong, Busan. The physical and chemical properties of the body and the glaze are evaluated through scientific analyses. All the selected celadon shards have a similar body color, regardless of the kiln from which they originated. The celadon shards from 2 3 kilns are brighter than those from 4 5 kilns, and there are two saturations, namely gray and brown. The brightness of the glaze shows a high contribution of red and yellow. The porosity of the selected shards is 8.8% in the gray saturation and 16.1% in the brown saturation. The major chemical compositions of the body and glaze are in the typical chemical composition of the celadon, but the $TiO_2$ flux contents are different. The visible characteristic difference between the 2 3 kilns and the 4 5 kilns can be attributed to the mixing and the firing process rather than the raw materials used. The difference in the $Fe_2O_3$ and $K_2O$ flux between the 2 3 and 4 5 kilns can be attributed to changes in the ingredient combination during the process. In conclusion, Noksan-dong celadon could not be easier vitrification due to the manufacturing process that primary burning process, It is highly likely that there were process differences in kilns to produce high quality celadon.

A Study on the Characteristics of Dynamic Elastic Modulus in GyeongGi Gneiss Complex by Down Hole Test (하향식 탄성파를 통한 경기 편마암의 동탄성 특성연구)

  • Lee, Byok-Kyu;Lee, Su-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.371-379
    • /
    • 2008
  • In this study, seismic elastic wave and dynamic elastic modulus properties are investigated by down-hole seismic tests that were applied to the 11 gneiss area. The research results show that the realtionship between the two properties are $V_s=0.5589{\times}V_p$ in gneiss. The relationship between the two properties are separated into two groups. Group 1 is influenced mainly by the specific gravity of rock, but group 2 is influenced mainly by the joint aperture. As weathering progresses, group 1 clearly shows a decreasing tendency. In fresh and slightly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed in linear line but in moderately-highly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed curve as a quadratic function. Correlations between $V_s$ and dynamic elastic modulus are analyzed similar with a $V_p$ case.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.