• Title/Summary/Keyword: bulk soil

Search Result 479, Processing Time 0.028 seconds

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

Effects of Root on Bulk Density of Soils Tested by Volume Check Apparatus through Water-filling

  • Lee, Gye-Jun;Lee, Jeong-Tae;Ryu, Jong-Soo;Oh, Dong-Shig;Kim, Jeom-Soon;Lee, Yeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.505-508
    • /
    • 2015
  • Soil bulk density is a key parameter for soil physical property. Much root placed in rhizosphere soil lump, especially in grassland and orchard, makes it difficult to measure soil bulk density. This experiment was carried out to countermeasure the above drawbacks. Volume check apparatus using water-filling method was made of acryl for higher accuracy in bulk density measurement. 10 types of land cover, including bare, tall fescue, rye, and soybean, were used for determining the relationships between root and bulk density. In this study, higher root volume resulted in higher differences in bulk density between in-situ core soil and root-ridded core soil, which indicated the volume check apparatus through water-filling could be useful for increasing the accuracy of bulk density of soils with much root.

Prediction of Bulk Type Trailer Capacity in Consideration of Soil Physical Properties of Paddy Field (논 토양의 물리적 특성을 고려한 산물형 트레일러의 적정용량 예측)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A computer simulation was carried out to determinate the optimum capacity of bulk type trailer which is used as a tractor attachment. Soil physical properties. such as soil moisture content. bulk density, soil hardness and soil texture were measured in the 10 major rice production area for computer simulation. Mathematical model which include soil physical properties and vehicle factor was used for computer simulation. Most of the soil texture of the investigated area was silty loam. Soil moisture content ranged between 30 and 40% mostly. Soil bulk density was in the range of 1.500 to 1.700 kg/㎥. Soil hardness ranged between 1 to 18 kg/$\textrm{cm}^2$. Soil hardness incorporate the effects of many soil physical properties such as moisture content texture and bulk density, and so the range of soil hardness was greater than any other physical properties. The capacity of bulk type trailer was above 3000 kg$_{f}$ fer the most of the investigated area. and mostly in the range of 4000 to 6000 kg$_{f}$ depending upon the slip. But for the soft soil area such as Andong and Namyang. tractor itself had mobility problem and showed minus trailer capacity for some places. For this area. the capacity of bulk type trailer ranged between 1000 and 2000 kg$_{f}$ mostly so bulk type trailer should be designed as a small capacity compared to the other area.ared to the other area. area.

The Study of Improvement of Measurement Precision on Bulk Density, Soil Hardness and Air Permeability in Upland Soils

  • Ok, Jung-hun;Han, Kyung-hwa;Cho, Hee-rae;Zhang, Yong-seon;Seo, Young-ho;Jung, Kang-ho;Lee, Hyub-sung;Kim, Gi-sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.482-488
    • /
    • 2017
  • The measurement based on reliable standard operating procedures (SOPs) is important for consistent information. The objective of this study is to investigate reliable SOPs of soil physical methods, including core method for bulk density, Yamanaka hardness, and air permeameter method for air permeability. The coefficients of variation in bulk density (core method), Yamanaka hardness, and air permeability were ranged of 1~6%, 8~13%, and 10~84%, respectively. The variation in situ measurement such as bulk density, hardness, and air permeability due to spatial variability at measuring site was larger due to the number of replicates, organic matter content, and soil texture. Nevertheless, air permeability had different values as different number of replicates, and thus, it is thought that more replicates can result in higher reliability. It suggested that investigation of soil physical properties for the target sites should required to consider about soil texture, organic matter content, and number of replications before measurement. In conclusion, core sampling for bulk density measurement in upland soil recommended to perform in 3 repetitions with 2 inch core, and 3 inch core sampling for higher organic matter content.

Assessment of Subsoil Compaction by Soil Texture on Field Scale

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.628-633
    • /
    • 2015
  • It is necessary to assess soil physical properties and crop growth treated by compaction to establish the soil management standard. This study evaluated the bulk density, strength and crop growth after subsoil compaction for sandy loam and loam on the field in Suwon, Korea. The treatments were compaction and deep tillage. Sandy loam and loam were classified to coarse soil and fine soil, respectively, depending on clay contents. In coarse soil, bulk density of compacted plot was 8~17% greater than control and deep tilled plot. The root growth was worse in compacted plot compared with control. In fine soil, plow pan was not observed in deep tilled plot with 5~19% smaller bulk density than compacted plot and control. Deep tillage improved the crop growth. The soil physical properties by compaction were dependent on clay content and crop growth limit depended on the traffic driving.

Changes in the Physiochemical Characteristics of Artificial Soil after Rooftop Planting (옥상녹화 후 인공토양의 이화학적 특성 변화)

  • 안원용;김동엽
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.77-83
    • /
    • 2001
  • The purpose of this study is to provide the fundamental material and information for the plant maintenance after rooftop planting through physiochemical characteristics. The characteristics of artificial soils after rooftop planting from 1993 to 1999 was investigated. Fourteen investigation areas were selected from 4 cities(2 areas selected by each year). The analysis of the circumstances of the areas, the physical characteristics, and the chemical characteristics of the soil were conducted. The artificial soil pH ranged 5.26∼7.40 showing that after construction the soil pH tended to decrease. The soil bulk density of the site was lowest in 1999, 0.15g/㎤, and used to increase toward 1993. We found the fact that the soil bulk density increased gradually after rooftop application . The coefficients of permeability of the soils range from 0.016 to 0.052 cm/sec, which seemed to be in good permeability level. The artificial soils had relatively high water moisture capacity of 62.69∼71.36%. The soil organic matter content of the artificial soils ranged from 0.43 to 1.34%. The exchangeable caution concentration in the artificial soil ranged, Na, 2.36∼4.71mg·{TEX}$kg^{-1}${/TEX}, Mg 0.88∼2.84mg·{TEX}$kg^{-1}${/TEX},K 2.97∼9.61 mg·{TEX}$kg^{-1}${/TEX}, and Ca 9.39∼28.23 mg·{TEX}$kg^{-1}${/TEX}. The amount of total N ranged from 0.003 to 0.286% in study sites. Soil chemical properties varied year to year and showed little tend. The research results showed that some characteristics of the artificial soil were changed after rooftop planting, i.e., soil pH and soil bulk density. Soil bulk density had a negative relationship with the coefficient of permeability, showing that the drainage condition might be limited after some period. This study suggests that a diversity of the research in the changes of the plant growth basis on the areas after construction.

  • PDF

Changes in Physical Properties Especially, Three Phases, Bulk Density, Porosity and Correlations under No-tillage Clay Loam Soil with Ridge Cultivation of Rain Proof Plastic House

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Sun-Kook;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyung-Ju;Han, Yeon Soo;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.225-234
    • /
    • 2014
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique including recycling of the ridge and the furrow of a field for following crops in Korea. No-tillage systems affect soil physical properties such as three phase (solid, liquid, and air phase) and distribution of soil granular. Solid ratio of subsoil in 3-year of no-tillage (NT) treatment was remarkably lower than that in conventional (CT, 2-year of no-tillage + 1-year of tillage) treatment, while air ratio of subsoil in NT remarkably increased. Bulk density of subsoil in NT remarkably decreased. Porosity of subsoil in NT remarkably increased. Deviation of air phase, bulk density, and porosity of top soil and subsoil in NT remarkably decreased in NT compared with CT. Solid phase ratio and liquid phase ratio in NT and CT had positive (+) correlation. Solid phase ratio and air phase ratio in NT and CT had negative (-) correlation, also liquid phase ratio and air ratio had negative (-) correlation. Bulk density and liquid ratio in soil had positive (+) correlation at top soil and subsoil in NT. Bulk density and air ratio in soil had negative (-) correlation in NT and CT. Porosity and liquid phase ratio had negative (-) correlation, r =1), the significant value was lower in NT than in CT. Porosity and air phase ratio had positive (+) correlation (r =1).

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

Effects of Soil Texture and Bulk Density on the Least-Limiting Water Range (토성(土性)과 용적밀도(容積密度)가 최소생육제한수분범위(最小生育制限水分範圍)에 미치는 영향(影響))

  • Jo, In-Sang;Hyun, Byung-Keun;Cho, Hyun-Jun;Jang, Yong-Seon;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.51-55
    • /
    • 1997
  • Three soils, sandy loam, loam and silty clay loam, were selected and three inches soil cores with 4 bulk density(BD) levels were made by compressing the soils wetted with 3 levels water. Mechanical and water characteristics were measured and analyzed the mechanical resistance limiting water, available water and least-limiting water range. Mechanical resistance limiting water(MRLW) were appeared at higher bulk density than $1.6Mg/m^3$ in sandy loam, and $1.4Mg/m^3$ in loam and silty clay loam. The least-limiting water ranges were sharply decreased at the bulk density $1.6Mg/m^3$ in sandy loam and loam, $1.4Mg/m^3$ in silty clay loam. There were big deferences between available water contents and least limiting water ranges in finer texture and higher bulk density soils.

  • PDF

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped land VI. Relationship between annual change of soil phsico-chemical properties and yield of silage corn (신개간경사지 토양개량과 작물생육에 관한 연구 VI. 토양의 물리화학성 년차간 변화가 옥수수 청예수량에 미치는 영향)

  • 허봉구;김무성
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • This study was experimented to obtain the basic information on the changeable aspect and improvement of soil fertility in newly-reclaimed sloped land. Silage corn was cultivated under the six different treatments for 4 years. The relation between the amount or ratio of annual changes of soil physico-chemical properties and yield of silage corn were analyzed. Soil bulk density was decreased in 3rd year at topsoil, but that decreased in 4th year at subsoil. Soil organic matter also decreased in 2nd year at topsoil, and decreased continuously at subsoil. Bulk density and hardness of soil depths showed significant negative simple correlation with dry matter yield and cation exchange capacity showed positive. Correlation coefficient of chemical properties with dry matter yield were low. The range of annual changes of moisture percent, hardness and organic matter were wider than the other properties. The significantly different of physical properties were higher than the chemical properties, and those of topsoil were higher than subsoil. According to multiple regression between yield and physico-chemical properties of subsoil, bulk density and cation exchange capacity were in the greatest contribution at the variations, but bulk density was greatest at the ratios.

  • PDF