• 제목/요약/키워드: bulk heterojunction

검색결과 83건 처리시간 0.028초

CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구 (Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer)

  • 박소현;강학수;나타라잔센틸루마르;박대원;최영선
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.191-197
    • /
    • 2009
  • 박막형 유기 태양전지의 성능 향상을 위하여 정공 수송층인 CuPc 층에 강한 p형 유기 반도체인 $F_4$-TCNQ을 도핑하여 ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5wt%)/CuPc:C60 (blending ratio 1 : 1)/C60/BCP/LiF/Al의 이종 접합 구조를 가지는 P-i-n형 유기 박막형 태양전지 소자를 진공증착 장비를 이용하여 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류($J_{sc}$), 개방 전압($V_{oc}$), 충진 인자(fill factor: FF), 에너지 전환 효율(${\eta}_e$) 등을 측정하고 계산하여 성능 굉가를 수행하였다. CuPc 층에 $F_4$-TCNQ을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수강도가 증가하였으며, $F_4$-TCNQ가 도핑된 CuPc 박막에서 $F_4$-TCNQ 유기 분자의 분산성 향상, 박막의 표면 균일성, 주입 전류(injection currents) 향상 효과등에 의해서 제조된 p-i-n형 유기 박막 태양전지의 성능이 향상되는 것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(${\eta}_e$)은 0.15%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.

Enhancement of Power Conversion Efficiency from Controlled Nanostructure in Polymer Bulk-Hetero Junction Solar Cells

  • Wang, Dong-Hwan;Park, O-Ok;Park, Jong-Hyeok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.76-76
    • /
    • 2011
  • Polymer-fullerene based bulk heterojunction (BHJ) solar cells can be fabricated in large area using low-cost roll-to-roll manufacturing methods. However, because of the low mobility of the BHJ materials, there is competition between the sweep-out of the photogenerated carriers by the built-in potential and recombination within the thin BHJ film [12-15]. Useful film thicknesses are limited by recombination. Thus, there is a need to increase the absorption by the BHJ film without increasing film thickness. Metal nanoparticles exhibit localized surface plasmon resonances (LSPR) which couple strongly to the incident light. In addition, relatively large metallic nanoparticles can reflect and scatter the light and thereby increase the optical path length within the BHJ film. Thus, the addition of metal nanoparticles into BHJ films offers the possibility of enhanced absorption and correspondingly enhanced photo-generation of mobile carriers. In this work, we have demonstrated several positive effects of shape controlled Au and Ag nanoparticles in organic P3HT/PC70BM, PCDTBT/PC70BM, Si-PCPDTBT/PC70BM BHJ-based PV devices. The use of an optimized concentration of Au and Ag nanomaterials in the BHJ film increases Jsc, FF, and the IPCE. These improvements result from a combination of enhanced light absorption caused by the light scattering of the nanomaterials in an active layer. Some of the metals induce the plasmon light concentration at specific wavelength. Moreover, improved charge transport results in low series resistance.

  • PDF

Time-Dependent Density Functional Theory Study on Cyclopentadithiophene-Benzothiadiazole-Based Push-Pull-Type Copolymers for New Design of Donor Materials in Bulk Heterojunction Organic Solar Cells

  • Ku, Ja-Min;Kim, Dae-Kyun;Ryu, Taek-Hee;Jung, Eun-Hwan;Lansac, Yves;Jang, Yun-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.1029-1036
    • /
    • 2012
  • Push-pull-type copolymers - low-band-gap copolymers of electron-rich fused-ring units (such as cyclopentadithiophene; CPDT) and electron-deficient units (such as benzothiadiazole; BT) - are promising donor materials for organic solar cells. Following a design principles proposed in our previous study, we investigate the electronic structure of a series of new CPDTBT derivatives with various electron-withdrawing groups using the time-dependent density functional theory and predict their power conversion efficiency from a newlydeveloped protocol using the Scharber diagram. Significantly improved efficiencies are expected for derivatives with carbonyl [C=O], carbonothioyl [C=S], dicyano [$C(CN)_2$] and dicyanomethylene [C=$C(CN)_2$] groups, but these polymers with no long alkyl side chain attached to them are likely to be insoluble in most organic solvents and inapplicable to low-cost solution processes. We thus devise several approaches to attach alkyl side chains to these polymers while keeping their high efficiencies.

Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer

  • Shafian, Shafidah;Jang, Yoonhee;Kim, Kyungkon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.348-348
    • /
    • 2016
  • Low dark current (off-current) and high photo current are both essential for a solution processed organic photodetector (OPD) to achieve high photo-responsivity. Currently, most OPDs utilize a bulk heterojunction (BHJ) photo-active layer that is prepared by the one-step deposition of a polymer:fullerene blend solution. However, the BHJ structure is the main cause of the high dark current in solution processed OPDs. It is revealed that the detectivity and spectral responsivity of the OPD can be improved by utilizing a photo-active layer consisting of an interdiffused polymer/fullerene bilayer (ID-BL). This ID-BL is prepared by the sequential solution deposition (SqD) of poly(3-hexylthiophene) (P3HT) and [6,6] phenyl C61 butyric acid methyl ester (PCBM) solutions. The ID-BL OPD is found to prevent undesirable electron injection from the hole collecting electrode to the ID-BL photo-active layer resulting in a reduced dark current in the ID-BL OPD. Based on dark current and external quantum efficiency (EQE) analysis, the detectivity of the ID-BL OPD is determined to be $7.60{\times}1011$ Jones at 620 nm. This value is 3.4 times higher than that of BHJ OPDs. Furthermore, compared to BHJ OPDs, the ID-BL OPD exhibited a more consistent spectral response in the range of 400 - 660 nm.

  • PDF

New Design and Synthesis of Donor-Acceptor units by Introducing Boron Based to Non-Boron based Semiconductor for high Voc OPV

  • Ryu, Ka Yeon;Cho, Kyuwan;Kim, Won-Suk;Kim, Kyungkon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.432.2-432.2
    • /
    • 2016
  • A new A-D-A type (Acceptor-Donor-Acceptor) conjugated based on pyridine-borane complex (Donor), non-boron fluorine (Donor) and 2,5-bis(alkyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) (Acceptor) were designed and synthesized via Pd-catalyzed Suzuki cross-coupling reaction. The synthesized boron based complex exhibited high electron affinity, which indicates deep HOMO energy levels and good visible absorption led to their use as donors in BHJ (bulk heterojunction) solar cells. Inverted devices were fabricated, reaching open-circuit voltage as high as 0.91eV. To probe structure-property relationship and search for design principle, we have synthesized pyridine-boron based electron donating small molecules. In this study, we report a new synthetic approach, molecular structure, charge carrier mobility and morphology of blended film and their correlation with the photovoltaic J-V characteristics in details.

  • PDF

임피던스 분석을 통한 유기태양전지의 bending에 따른 성능변화

  • 유세기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.258.1-258.1
    • /
    • 2015
  • ITO가 코팅된 PET 기판 위에 P3HT:PCBM으로 이루어진 bulk heterojunction 유기 태양전지 소자를 만들었다. 이렇게 만들어진 유기 태양전지의 flexibility 특성을 측정하기 위해서, 태양전지 소자를 반지름이 다른 원통에 감아서 휘어지게 한 후 AM 1.5의 조명 하에서 전류-전압 특성을 관측하고 소자의 임피던스 분석도 측정하였다. 이때 flexibility 특성 측정의 일관성을 위하여, 단 하나의 유기 태양전지 소자를 만들고, 이 소자를 반지름이 큰 원통에서 부터 휘게 하고난 후 소자의 특성을 측정하고, 점차 작은 원통으로 바꾸어 가면서 측정을 진행하였다. 임피던스 분석 실험 자료로부터 shifted two semicircles이라는 equivalent circuit model를 분석하고 난 후, 이 회로를 구성하는 구성 성분-R(s), R(low f), R(hi f), C(low f), C(hi f)-값의 변화를 원통의 반지름의 변화에 따라 분석하였다. 반지름이 0.75cm일 때, power conversion efficiency (PCE) 값은 초기값에 비해 약 1/3로 줄었고, 반지름이 0.5cm일 때는 약 10%로 줄어 들었다. 나머지 1~2 cm일 때는 거의 변화가 나타나지 않았다. 휘어짐에 따른 이러한 태양전지의 특성의 변화를 임피던스 분석의 Cole-Cole plot의 저 주파수 영역의 반원의 반지름에 가장 큰 영향을 받음을 확인하였고, 저항과 capacitance 값의 변화에 따른 특성에 대해 이번 발표에서 더 자세히 설명할 예정이다.

  • PDF

유기 태양전지의 후열처리온도에 따른 전기적 Parameter들의 추출 (Extraction of electrical parameters as a function of post-annealing in organic solar cells)

  • 김동영;김지환;이혜지;김해진;손선영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.460-461
    • /
    • 2009
  • We studied the effects of post-annealing treatment on poly(3-hexylthiophene)(P3HT, donor):[6,6]-phenyl $C_{61}$ butyric acid methyl ester(PCBM, acceptor) blend film as an active layer in the organic solar cells(OSCs). For the formation of the active layer, 3 wt.% P3HT:PCBM solution in chlorobenzene were deposited by spin-coating method. In order to optimize the performance of OSCs, the P3HT crystallization and the redistribution of PCBM cluster at P3HT:PCBM composition as a function of post-annealing condition from room temperature to $200^{\circ}C$ were measured by the Hall effect and the UV-vis Spectrophotometer. We thought that the improved efficiency in the OSCs with post-annealing treatment at $150^{\circ}C$ can be explained by the efficient separation or collection of the photogenerated excitons at donor-acceptor interface by P3HT crystallization.

  • PDF

AlGaAs/GaAs HBT의 DC 파라미터에 미치는 온도영향의 해석 (Analysis of temperature effects on DC parameters of AlGaAs/GaAs HBT)

  • 김득영;박재홍;송정근
    • 전자공학회논문지A
    • /
    • 제33A권12호
    • /
    • pp.39-46
    • /
    • 1996
  • In AlGaAs/GaAs HBT the temperature dependence of DC parameters was investigated over the temperature range between 95K and 580K. The temperature dependence of DC parameters depends on the relative contribution of each of the current components suc as emitter-injection-current, base-injection-current, bulk recombination current, interface recombination curretn, thermal generation ecurrent and avalanche current due to impact ionization within the collector space charge layer in a specific temperature. In this paper we investigated the temperature effects on DC parameters such as V$_{BE,ON}$ current gain, input and output characteristics, V$_{CE, OFF}$, R$_{E}$, R$_{C}$ and analyzed the origins, and extracted the qualitativ econditions for a stable HBTs against the temperature variation. Finally, in order to keep HBTs stable with respect to the variation of temperature, the valance-band-energy-discontinuity at emitter-base heterojunction should be large enough to enhance the effect of carrier suppression at a relatively high temperature. In addition the recombination centers, especially around collector junction, should be removed and the area of emitter and collector junction should be identical as well.

  • PDF

$TiO_2$ 나노 입자의 중간 전극을 이용한 직렬 적층형 유기 태양 전지 (Solution-processed Polymer Tandem Cells Using Nano Crystalline $TiO_2$ Interlayer)

  • 정원석;주병권;고민재;박남규;김경곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.444-444
    • /
    • 2008
  • For the polymer tandem cell, simple and advantaged solution-based method to electron transport intermediate layer is presented which are composed $TiO_2$ nanoparticles. Device were based on a regioregular Poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester($PC_{60}BM$) blend as a donor and acceptor bulk-heterojunction. For the middle electrode interlayer, the $TiO_2$ nanoparticles were well dispersed in ethanol solution and formed thin layer on the P3HT:PCBM charge separation layer by spin coating. The layer serves as the electron transport layer and divides the polymer tandem solar cell. The open-circuit voltage (Voc) for the polymer tandem solar cells was closed to the sum of those of individual cells.

  • PDF

Fabrication and Characterization of Electro-photonic Performance of Nanopatterned Organic Optoelectronics

  • 닐리쉬;한지영;권현근;이규태;고두현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.134.2-134.2
    • /
    • 2014
  • Photonic crystal solar cells have the potential for addressing the disparate length scales in polymer photovoltaic materials, thereby confronting the major challenge in solar cell technology: efficiency. One must achieve simultaneously an efficient absorption of photons with effective carrier extraction. Unfortunately the two processes have opposing requirements. Efficient absorption of light calls for thicker PV active layers whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. This dichotomy persists over the entire solar spectrum but increasingly so near a semiconductor's band edge where absorption is weak. We report a 2-D, photonic crystal morphology that enhances the efficiency of organic photovoltaic cells relative to conventional planar cells. The morphology is developed by patterning an organic photoactive bulk heterojunction blend of Poly(3-(2-methyl-2-hexylcarboxylate) thiophene-co-thiophene) and PCBM via PRINT, a nano-embossing method that lends itself to large area fabrication of nanostructures. The photonic crystal cell morphology increases photocurrents generally, and particularly through the excitation of resonant modes near the band edge of the organic PV material. The device performance of the photonic crystal cell showed a nearly doubled increase in efficiency relative to conventional planar cell designs. Photonic crystals can also enhance performance of other optoelectronic devices including organic laser.

  • PDF