• Title/Summary/Keyword: bulk fiber

Search Result 169, Processing Time 0.023 seconds

Pressure Effects on the Morphology Development of C/C Composites During Carbonization

  • Joo, Hyeok-Jong;Ryu, Seung-Hee;Ha, Hun-Seung
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.158-164
    • /
    • 2001
  • It is well known that the fabrication process of carbon/carbon composites is very complex. Above all, the carbonization process have major effect on the morphology development of carbon matrix. Carbon/carbon composites of 4-directional fiber preform were fabricated using the coal tar based pitch as a matrix precursor in this study. According to carbonization pressure of 1 bar, 100 bar, 600 bar, and 900 bar, morphological changes of cokes and matrix of composites were discussed. As the carbonization pressure increased to 600 bar, the flow pattern morphology of bulk mesophse was well developed. On the contrary, mosaic pattern morphology was found in case of 900 bar of carbonization pressure. It is confirmed that the carbonization pressure have profound effect on the degree of graphitization and crystal size of carbon matrix. Even in the highly densified carbon/carbon composites, large voids were still found in the matrix pocket region.

  • PDF

Durable Press Finish of Cotton via Dual Curing Using UV Light and Heat

  • Jang, Jinho;Yoon, Ki-Cheol;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.184-189
    • /
    • 2001
  • Continuous photografting/crosslinking of polyethyleneglycol dimethacrylate oligomers onto cotton using a water-soluble benzophenone photoinitiator was investigated. Photografting increased with increasing irradiation dose, oligomer concentration and photoinitiator concentration. Maximum grafting efficiency of DM 400 and 600 were 83% and 79%, respectively. the photografting increased the wrinkle resistance of cotton implying surface crosslinking of cotton. bothsurface crosslinking and bulk crosslinking of cotton were accomplished via dual curing of a mixed formulation containing both a thermally curable component (BTCCA/SHP) and a UV-curable component. The wrinkle resistance of the crosslinked cotton was found to be higher when cured by thermal curing due to the facile post-polymerization of the UV active component. The presence of crosslinks in the dually crosslinked cotton was verified with FT-IR and thermogravimetric analysis.

  • PDF

Pharmacologic treatment for chronic functional constipation (만성 기능성 변비의 약물요법)

  • Lee, Gwang-Jae
    • Journal of Korea Association of Health Promotion
    • /
    • v.3 no.1
    • /
    • pp.55-61
    • /
    • 2005
  • Functional constipation is regarded as a long-standing symptomatic manifestation of abnormal defecation expressed by either a reduced frequency of bowel movements and /or an altered act of evacuation. Patients with constipation can be treated with laxatives, diets and regular habits. Thorough evaluation of functional constipation is considered in those in whom conservative treatment with dietary advice and use of laxatives fails. Patients with normal colonic transit and normal anorectal function may only need reassurance, education and dietary advice with fiber supplementation. For constipated patients in whom such treatment modalities fail, laxatives including bulk-forming and osmotic agents may be used Although most laxatives, if used intermittently, are relatively safe, they must be chosen bearing in mind possible side effects, patient compliance and their action mechanisms. A subgroup of patients with slow transit through the colon ay be unresponsive to conventional laxatives, and, in these subjects, a trial with enteroprokinetics and sometimes stimulant laxatives should be attempted. This article presents our view of the assessment and pharmacologic treatment of functional constipation.

  • PDF

Development of a Hybrid DPSSL with a Pulse Parameter Variable LD Seed (광펄스 파라미터 가변 LD를 이용한 복합형 DPSSL 개발)

  • Noh, Young-Chul;Shin, Woo-Jin;Yu, Bong-Ahn;Lee, Yeung-Lak;Jung, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.7-13
    • /
    • 2010
  • We report a hybrid DPSSL with a pulse parameter variable LD seed, all-fiberized polarization-maintained pulsed Yb-doped fiber preamplifier chains, and a bulk Nd:$YVO_4$ power amplifier. Pulse parameter of LD seed was controlled by direct current modulation. The hybrid DPSSL generates 1064 nm laser pulses with an average power of 40W, a pulse duration of 20-40ns, and a repetition rate of 100-500kHz.

Improvement of Thickness in White Duplex Board by Utilization of Defibrated Fibers (1) - Utilization of Defibrated Fibers - (백판지의 두께 증대를 위한 목질섬유의 이용 (1) - 목질섬유의 이용 -)

  • Seo, Yung Bum;Kim, Hyun Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.34-40
    • /
    • 2014
  • Wood fibers for medium density fiberboard (MDF) was used in the filler layer of the white duplex board for increasing thickness and bulk of the board. The MDF fibers and the old corrugated container (OCC) furnish were refined, and mixed together to form paperboard. At optimum mixing ratios and refining degrees, stiffness and tensile strength of the MDF fiber-containing board were higher than those of the board with 100% OCC. It was found that there was possibility to reduced basis weight of the filler layer down to 90% of the all OCC furnish by judicious selection of the mixing ratio and the refining method of the MDF fibers. Drainage rate increase and potential drying energy savings were additional benefits.

Physical Properties of Ultra-fine Denier Filament Yarn Fabric

  • Kim, Jong-Jun;Son, Yang-Kug
    • Journal of Fashion Business
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Various high-touch textile products have been developed recently including ultra-fine denier filament yarn fabrics. The touch or hand of high value-added products is of prime importance. Physical and mechanical properties of fabric specimens, ultra-fine denier filament yarn fabric specimen, 100% wool fabric and wool/polyester 50:50 fabric,were measured using the KES. Compressibility of the ultra-fine denier fabric is recommendable, possibly due to the good bulk property of the specimen. Overall, the THV of the ultra-fine denier fabric is positioned between those of the 100% wool fabric and wool/polyester 50:50 fabric. Observed differences in the physical and mechanical properties explain the fabric specimen characteristics reasonably.

Distribution of Deposited Carbon in Carbon Brake Disc Made by Pressure-Gradient Chemical Vapor Infiltration

  • Chen, Jianxun;Xiong, Xiang
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.25-29
    • /
    • 2007
  • The carbon brake discs were manufactured by densification the carbon fiber preform using PG-CVI technology with Propene as a carbon precursor gas and Nitrogen as a carrier gas. The densities of carbon brake discs were tested at different densification time. The results indicate that the densification rate is more rapid before 100 hrs than after 200 hrs. The CTscanning image and the SEM technology were used to observe the inner subtle structure. CT-images show the density distribution in the carbon brake disc clearly. The carbon brake disk made by PG-CVI is not very uniform. There is a density gradient in the bulk. The high-density part in the carbon brake is really located in the friction surface, especially in the part of inner circle. This density distribution is most suitable for the stator disc.

Comport Sensation of Blue Jeans depending on Fiber Contents (청바지의 소재별 쾌적감에 관한 연구)

  • 홍문경;이미식;권계화;전정애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.2
    • /
    • pp.237-248
    • /
    • 2001
  • The purpose of this study was to compare the comfort sensation depending on four different kinds of denim blue jeans: cotton, cotton/tencel, tencel, cotton/pp. The objective and subjective experiments were conducted to measure the comfort of blue jeans. To investigate the objective comfort, physical properties related to thermal insulation, moisture properties and hand were measured. For subjective comfort measurement, 5 healthy female college students were taken as subjects. The outcomes of the experiments are as follows: The higher the air permeability and bulk density of the denim, the lower the thermal insulation, the thicker the denim, the higher the thermal insulation. Tencel blending denim showed the higher bulk density, the lower air contents, and consequently the lower thermal insulation than the other denims. Tencel showed the highest moisture regain, and cotton/tencel blend showed the highest water vapor permeability. Tencel denim had relatively better flexibility, shape stability and elastic recovery than the other denims. The total hand values of the denims by KES-FB system were not significantly different. Cotton and cotton/pp denims raised the subjects body temperature after excercise more than tencel or cotton/tencel denims. Average skin temperature was found to have a correlation with micro climate temperature and micro climate humidity. The correlation coefficients were 0.749 and 0.767, respectively. However, average skin temperatures were not significantly different among the materials. Pulse rate was found to be the highest when wearing cotton/pp and the lowest in case of cotton/tencel denim. The energy was consumed in order of cotton>cotton/pp>tencel>cotton/tencel. There was no significant difference in preference before excercise, but, after the excercise, the order of preference changed as the following; cotton/tencel>tencel>cotton/pp>cotton.

  • PDF

Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) (고출력 광섬유 레이저 기술의 현황 및 전망)

  • Kwon, Youngchul;Park, Kyoungyoon;Lee, Dongyeul;Chang, Hanbyul;Lee, Seungjong;Vazquez-Zuniga, Luis Alonso;Lee, Yong Soo;Kim, Dong Hwan;Kim, Hyun Tae;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2016
  • Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led to the progress of fiber lasers, such as gain-fiber regimes based on ytterbium-doped silica, optical pumping schemes through the combination of laser diodes and double-clad fiber geometries, and tandem schemes for minimizing quantum defects. Furthermore, we discuss various power-limitation issues that are expected to incur with respect to the ultimate power scaling of fiber lasers, such as efficiency degradation, thermal hazard, and system-instability growth in fiber lasers, and various relevant methods to alleviate the aforementioned issues. This discussion includes fiber nonlinear effects, fiber damage, and modal-instability issues, which become more significant as the power level is scaled up. In addition, we also review beam-combining techniques, which are currently receiving a lot of attention as an alternative solution to the power-scaling limitation of high-power fiber lasers. In particular, we focus more on the discussion of the schematics of a spectral beam-combining system and their individual requirements. Finally, we discuss prospects for the future development of fiber laser technologies, for them to leap forward from where they are now, and to continue to advance in terms of their power scalability.

A Study on the Promotion of Combustible Construction Waste Recycling (가연성 건설폐기물의 자원화 제고를 위한 방안)

  • Park, Ji-Sun;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The current enforce decree of "The Act on the Promotion of Construction Waste Recycling" divides seventeen kinds of construction wastes by property and configuration. Mixed construction waste, one of them classified by the enforce decree, is composed two more than justified construction wastes except refuse soil and rock. In construction wastes justified by enforce decree of this law, most refuse concrete and asphalt concrete of construction wastes are recycled. As well as refuse metal is separated, sorted from bulk them, and merchandised for value. Finally this is used the secondary manufactured products. Even though combustible construction wastes like refuse wood, plastics, fiber can be recycled RDF(Refuse derived fuel) or RPF(Refuse plastic fuel) because of high caloric value and low heavy metal but most of them are discharged as mixed construction waste and then treated by treated by incineration and landfill. Therefore, to control construction waste flow efficiently, construction wastes are classifies first combustible, incombustible, mixed combustible, incombustible and etc. in this study. The combustible waste is consisted refuse wood, plastics, fiber and etc. and incombustible waste contains refuse concrete, asphalt, and etc. Mixed construction is construction waste that can not separate from mixed waste bulk with different kinds.

  • PDF