MultiSensor Core Logger (MSCL) is a useful system for logging the physical properties (compressional wave velocity, wet bulk density, fractional porosity, magnetic susceptibility and/or natural gamma radiation) of marine sediments through scanning of whole cores in a nondestructive fashion. But MSCL has a number of problems that can lead to spurious results depending on the various factors such as core slumping, gas expansion, mechanical stretching, and the thickness variation of core liner and sediment. For the verification of MSCL data, compressional wave velocity, wet bulk density, and porosity were measured on discrete samples by Hamilton Frame and Gravimetric method, respectively. Acoustic impedance was also calculated. Physical property data (velocity, wet bulk density, and impedance) logged by MSCL were slightly larger than those of discrete sample, and porosity is reverse. Average difference between MSCL and discrete sample at both sites is relatively small such as 2224 m/s in velocity, $0.02-0.08\;g/\textrm{cm}^3$ in wet bulk density, and 2.52.7% in porosity. The values also show systematic variation with sediment depth. A variety of factors are probably responsible for the differences including instrument error, various measurement method, sediment disturbance, and accuracy of calibration. Therefore, MSCL can be effectively used to collect physical property data with high resolution and quality, if the calibration is accurately completed.
Throughout the world, physical and chemical analyses of horticultural substrates are carried out in many different ways at the different laboratories. In Europe, standardization in properties and analytical methods of horticultural substrates has been a topic over the last decades. As a result, the CEN methods as European standard methods for the physical and chemical analyses were introduced and the final draft was reported in 1999 by CEN(Committee for European Standardization). Dry matter and moisture content are analyzed after drying samples at $103^{\circ}C$. Laboratory compacted bulk density is analyzed by determining the weight of sample compacted in the test cylinder with constant volume. Dry bulk density, particle density, total pore space, water volume, air volume and volume shrinkage are determined by saturating, draining and drying the sample using double rings and a sand suction table. pH and EC are analyzed by 1:5(sample:distilled water) extraction method on the basis of volume. Organic matter and ash content are determined after drying and combusting the samples. Now, CEN methods are being regarded almost as European standard methods. Further study needs to be carried out for universal applicability of the CEN methods to all the substrates.
Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.19
no.3
/
pp.213-232
/
2009
This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.
Kim, Jai-Soo;Min, Kyung-Ah;Cho, Kyung-Suk;Lee, In-Sook
Environmental Engineering Research
/
v.12
no.2
/
pp.37-45
/
2007
Phytoremediation has been used effectively for the biodegradation of oil-based contaminants, including diesel, by the stimulation of soil microbes near plant roots (rhizosphere). However, the technique has rarely been assessed for itsinfluence on soil microbial properties such as population, community structure, and diversity. In this study, the removal efficiency and characteristics of rhizobacteria for phytoremediation of diesel-contaminated soils were assessed using barnyard grass (Echinochloa crusgalli). The concentration of spiked diesel for treatments was around $6000\;mg\;kg^{-1}$. Diesel removal efficiencies reached 100% in rhizosphere soils, 76% in planted bulk soils, and 62% in unplanted bulk soils after 3weeks stabilization and 2 months growth(control, no microbial activity: 32%). The highest populations of culturable soil bacteria ($5.89{\times}10^8$ per g soil) and culturable hydrocarbon-degraders($5.65{\times}10^6$ per g soil) were found in diesel-contaminated rhizosphere soil, also yielding the highest microbial dehydrogenase. This suggests that the populations of soil bacteria, including hydrocarbon-degraders, were significantly increased by a synergistic rhizosphere + diesel effect. The diesel treatment alone resulted in negative population growth. In addition, we investigated the bacterial community structures of each soil sample based on DGGE (Denaturing Gel Gradient Electrophoresis) band patterns. Bacterial community structure was most influenced by the presence of diesel contamination (76.92% dissimilarity to the control) and by a diesel + rhizosphere treatment (65.62% dissimilarity), and least influenced by the rhizosphere treatment alone (48.15% dissimilarity). Based on the number of distinct DGGE bands, the bacterial diversity decreased with diesel treatment, but kept constant in the rhizosphere treatment. The rhizosphere thus positively influenced bacterial population density in diesel-contaminated soil, resulting in high removal efficiency of diesel.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.6
no.2
/
pp.165-175
/
1996
Fourteen(14) large commercial buildings located in Seoul with friable sprayed-on surface insulation material on ceiling were investigated for fiber types in bulk material and for airborne fiber concentrations in buildings by transmission electron microscopy (TEM) in order to compare the results with those by polarized light microscopy (PLM) and phase contrast microscopy (PCM). The results were as follows: 1. Chrysotile asbestos was found in one bulk sample out of total 14 bulk samples collected. Glass fiber and mineral wool were the two major constituents of the bulk samples. 2. The Na-Mg-Si-Ca-Fe-Al ratios of the EDX spectra which were normalized with the Si peak were 0-1.0-10-8.3-4.0-4.0 in mineral wool and 0-5-10-21-0-0 in chrysotile asbestos, respectively. 3. Airborne fiber concentrations were log-normalcy distributed and the geometric mean (geometric standard deviation) fiber concentrations by TEM in the underground parking lots and inside buildings were 0.0048 f/cc(1.93) and 0.0040 f/cc(2.27), respectively with no statistical difference. In the outdoor ambient air, statistically significantly lower concentration of 0.0018 f/cc(2.04) was measured. 4. The TEM/PCM ratios of airborne fiber concentrations ranged 0.5 - 2.0 for 80 % of airborne samples analyzed, end the regression equation between TEM and PCM was PCM=-0.2724+1.1355(TEM) with the coefficient of determination $R^2=0.52$. The results of this study confirmed that the sprayed-on surface insulation material found in some commercial buildings may possibly be contaminated with asbestos fiber. Since statistically significant relationship of fiber concentrations measured by PCM and TEM inside buildings and ambient air was found, previous results by PCM in ambient air could be used to estimate the ambient fiber concentrations in knowing the ratio of TEM/PCM.
Strontium selective chromatographic material $(Sr-Spec^{TM})$ was investigated for separation of radiostrontium from environmental soil and water sample. This chromatographic material has great capacity of binding of strontium ion in nitric acid media, and has selectivity to permit the separation of stontium from bulk amount of calcium. But the extraction of strontium was reduced by the other interfering ions such as K and Ba. So, in order to apply this material to the soil sample, prior removal treatment of K and Ba was needed. But the Sr-Spec material could provides simple and effective methods for the separation and removal of radiostrontium from liquid sample.
This commentary presents the regulatory backgrounds and development of the national proficiency testing (PT) scheme on asbestos analysis in the Republic of Korea. Since 2009, under the amended Occupational Safety and Health Act, the survey of asbestos in buildings and clearance test of asbestos removal works have been mandated to be carried out by the laboratories designated by the Ministry of Employment and Labor (MOEL) in the Republic of Korea. To assess the performance of asbestos laboratories, a PT scheme on asbestos analysis was launched by the Korea Occupational Safety and Health Agency (KOSHA) on behalf of the MOEL in 2007. Participating laboratories are evaluated once a year for fiber counting and bulk asbestos analysis by phase contrast microscopy and polarized light microscopy, respectively. Currently, the number of laboratory enrollments is > 200, and the percentage of passed laboratories is > 90. The current status and several significant changes in operation, sample preparations, and statistics of assigning the reference values of the KOSHA PT scheme on asbestos analysis are presented. Critical retrospect based on the experiences of operating the KOSHA PT scheme suggests considerations for developing a new national PT scheme for asbestos analysis.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.5
no.2
/
pp.137-146
/
1995
Twenty(20) large commercial buildings located in Seoul with friable sprayed-on surface insulation material on ceilings were investigated for asbestos content in bulk material by polarized light microscopy and for airborne fiber concentrations in buildings by phase contrast microscopy. In addition, such building-related variables as building age, numbers of traffic, airflow, surface conditions of the ceiling, temperature, and humidity were studied for any correlation with airborne fiber concentrations. The results were as follows: 1. Chrysotile asbestos was found in two bulk samples with 3-5% content and with <1%in one sample out of total 20 bulk samples collected. Glass fiber and mineral wool were the two major constituents of the bulk samples. 2. The ceiling surfaces were very friable in 16 buildings and were relatively hard in 4 buildings. The friability of the surface material was dependent upon the type and the amount of binder that had been mixed with the sprayed-on surface material. 3. Airborne fiber concentrations were log-normally distributed and the geometric mean(geometric standard deviation) fiber concentrations in the underground parking lots, inside buildings, and outdoor ambient air were 0.0063(1.97)f/cc, 0.0068(2.29)f/cc, and 0.0033(2.36)f/cc, respectively. 4. No significant relationship of airborne fiber concentrations and all building-related variables studied except humidity was found. The results of this study suggest that the sprayed-on surface insulation material found in some commercial buildings may possibly be contaminated with asbestos. Since most of the ceiling surfaces surveyed were very friable and poorly maintained and the airborne fiber concentrations were relatively high, there is a possibility of asbestos fiber contamination in these buildings, particularly at those buildings with asbestos-contaminated surface material. Since poorly maintained surface conditions were thought to be a source of high airborne fiber concentrations, there is a urgent need of a systematic operation and maintenance program. Further study of non-occupational asbestos exposure in general population utilizing advanced analytical technique such as transmission electron microscopy is highly recommended.
In this investigation, Bi2MoO6 deposited graphene nanocomposite (BMG) was synthesized using a simple microwave assisted hydrothermal synthesis method. The synthesized BMG nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray analysis, and photocurrent analysis. The study revealed that the catalysts prepared have high crystalline nature, enhanced light responsive property, high catalytic activity, and good stability. XRD results of BMG composite exhibit a koechlinite phase of Bi2MoO6. The surface property is shown by SEM and TEM, which confirmed a homogenous composition in the bulk particles of Bi2MoO6 and nanosheets of graphene. The catalytic behavior was investigated by the decomposition of Rhodamine B as a standard dye. The results exhibit excellent yields of product derivatives at mild conditions under ultrasonic/visible light-medium. Approximately 1.6-times-enhanced sono-photocatalytic activity was observed by introduction of Bi2MoO6 on graphene nanosheet compared with control sample P25 during 50 min test.
Kwon, Jiwoon;Chung, Eun-Kyo;Lee, In Seop;Kang, Seong-Kyu;Kim, Hyunwook
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.21
no.4
/
pp.222-226
/
2011
This study was conducted to identify the characteristics of analytical errors shown in the Korean quality control program on bulk asbestos analyses using polarized light microscopy (PLM). 179 participating laboratories were required to analyze 4 samples respectively and asked to classify each test sample as asbestos-containing (positive) or non-asbestos-containing (negative). For positive samples, participants were also asked to identify the type and semiquantitate the contents of asbestos present. The test results showed 21 (4%) false negative errors among 562 samples, 9 (6%) false positive errors among 154 samples and 53 (9%) asbestos identification errors among 562 samples. Most of false negative and positive errors were observed in a few types of samples. Higher frequencies of asbestos identification errors were shown in samples containing two or more types of asbestos and samples containing anthophyllite, tremolite or actinolite asbestos. For semiquantitative analyses, the ratios of mean to nominal weight contents were 2.1 for chrysotile and 2.9 for amphiboles. A tendency of over-estimation was observed in semiquantitative analyses using the visual estimation technique and higher in case of analyzing samples containing amphiboles than chrysotile. Coefficients of variation (CVs) of semiquantitative analytical results were 0.44~0.83 and 0.5~1.14 for samples containing chrysotile and amphibole asbestos, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.