• Title/Summary/Keyword: built-in sensors

Search Result 316, Processing Time 0.034 seconds

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

Specification-based Analog Circuits Test using High Performance Current Sensors (고성능 전류감지기를 이용한 Specification 기반의 아날로그 회로 테스트)

  • Lee, Jae-Min
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1260-1270
    • /
    • 2007
  • Testing and diagnosis of analog circuits(or mixed-signal circuits) continue to be a hard task for test engineers and efficient test methodologies to solve these problems are needed. This paper proposes a novel analog circuits test technique using time slot specification (TSS) based built-in current sensors (BICS). A technique for location of a fault site and separation of fault type based on TSS is also presented. The proposed built-in current sensors and TSS technique has high testability, fault coverage and a capability to diagnose catastrophic faults and parametric faults in analog circuits. In order to reduce time complexity of test point insertion procedure, external output and power nodes are used for test points and the current sensors are implemented in the automatic test equipment(ATE). The digital output of BICS can be easily combined with built-in digital test modules for analog IC test.

  • PDF

Architecture Support for Context-aware Adaptation of Rich Sensing Smartphone Applications

  • Meng, Zhaozong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.248-268
    • /
    • 2018
  • The performance of smartphone applications are usually constrained in user interactions due to resource limitation and it promises great opportunities to improve the performance by exploring the smartphone built-in and embedded sensing techniques. However, heterogeneity in techniques, semantic gap between sensor data and usable context, and complexity of contextual situations keep the techniques from seamless integration. Relevant studies mainly focus on feasibility demonstration of emerging sensing techniques, which rarely address both general architectures and comprehensive technical solutions. Based on a proposed functional model, this investigation provides a general architecture to deal with the dynamic context for context-aware automation and decision support. In order to take advantage of the built-in sensors to improve the performance of mobile applications, an ontology-based method is employed for context modelling, linguistic variables are used for heterogeneous context presentation, and semantic distance-based rule matching is employed to customise functions to the contextual situations. A case study on mobile application authentication is conducted with smartphone built-in hardware modules. The results demonstrate the feasibility of the proposed solutions and their effectiveness in improving operational efficiency.

A development of intelligent spacer built in the Internal type UHF partial discharge sensor (초고주파 광대역 부분방전 센서를 내장한 지능형 스페이서 개발)

  • Kim, Dong-Suk;Hwang, Chul-Min;Kim, Young-Noh;Choi, Jae-Ok;Seo, Wang-Byuk;Han, Bong-Soo;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.163-164
    • /
    • 2007
  • In this study, we developed intelligent spacer built in the internal type UHF PD sensors. 3-Dimensional electro-magnetic simulations were performed to analyze electric-field distribution of the single-phase GIS and three-phase GIS. After considering the spacer's specification, Sensor structures were designed and analyzed using the 3-D EM Simulator. As a result of the simulation the internal type UHF PD sensors were built in. Performance of the sensor built into real scale GIS spacer was measured in terms of return loss and detected Max voltage. And we identified a character of the intelligent spacer by using 5pC partial discharge ceil.

  • PDF

Specification-based Analog and Mixed-signal Circuits Test with Minimal Built-In Hardware Overhead (내장 하드웨어 오버헤드를 최소화한 Specification 기반의 아날로그 및 혼합신호 회로 테스트)

  • Lee, Jae-Min
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.633-634
    • /
    • 2006
  • A new specification-based analog and mixed-signal test technique using high performance current sensors is proposed. The proposed technique using current sensors built in external ATE has little hardware overhead in circuit under test and high testability without time consuming operation of test point placement algorithm.

  • PDF

Infrastructure-independent Navigation System Using Embedded Map and Built-in Sensors in the Ubiquitous Parking Management (유비쿼터스 주차관리 시스템에서 내장 맵 및 센서를 이용한 인프라 독립 네비게이션 시스템)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.93-104
    • /
    • 2012
  • Significant advancements in technology enhanced the reliability of navigation systems that are in use today. The GPS is the most widely used technique for satellite-based location estimation. However, systems based on GPS can only be accurate in providing location data when there is a clear view of the satellites. This paper proposes a self-contained navigation system that does not depend on any tracking infrastructure. Using the built-in sensors of a smartphone and a self-contained map, we implemented an accurate car locator. Evaluation results show that our proposed system outperforms GPS in providing accurate car location assistance.

Performance of Built-in Capacitance Type Transducer of a Magnetic Bearing System (캐패시턴스형 센서가 내장된 자기베어링 시스템의 작동성능에 관한 연구)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2082-2088
    • /
    • 1995
  • In this paper, we designed and fabricated the magnetic bearings and built-in type cylindrical capacitive transducers for improving the vibration characteristics of rotating shaft. The eddy current and magnetic field from the electromagnet of the bearing don't affect the measuring signal of the capacitive type transducers so that it is possible to locate the capacitive sensor plates around the magnetic bearing poles and can improve the spillover problem which is induced by the noncollocation of the sensors and actuators. According to the sensitivity calibration schemes using a X-Y table, the cylindrical capacitive transducers have a good linearities in the .+-.70.mu.m range from the geometric center of the sensor plates. The measured results also show high displacement sensitivities of the sensors. According to the performance test of the magnetic bearing which is controlled by the analog PD controllers, we found that the built-in capacitive transducer system successfully measures the journal displacement in the magnetic field and therefore the magnetic bearing system supports the rotating shaft up to 12,000 rpm.

Development of an Intelligent Spacer Built in the Internal type UHF Partial Discharge Sensor (초고주파 광대역 부분방전 센서를 내장한 지능형 스페이서 개발)

  • Kim, Dong-Suk;Hwang, Chul-Min;Kim, Young-Noh;Choi, Jae-Ok;Seo, Wang-Byuk;Han, Bong-Soo;Choi, Soo-Hyun;Jang, Yong-Mu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1378-1379
    • /
    • 2008
  • In this study, we developed intelligent spacer built in the internal type UHF PD sensors. 3-Dimensional electro-magnetic simulations were performed to analyze electric-field distribution of the single-phase GIS and three-phase GIS. After considering the spacer's specification, Sensor structures were designed and analyzed using the 3-D EM Simulator. As a result of the simulation the internal type UHF PD sensors were built in. Performance of the sensor built into real scale GIS spacer was measured in terms of return loss and detected Max voltage. And we identified a character of the intelligent spacer by using 5pC partial discharge cell.

  • PDF

Comparison Between Performance of Wireless MEMS Sensors and an ICP Sensor With Earthquake-Input Ground Motions (지진 입력 진동대를 이용한 무선 MEMS 센서와 ICP 가속도계의 성능 비교)

  • Mapungwana, S.T.;Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2019
  • Wireless sensors are more favorable in measuring structural response compared to conventional sensors in terms of them being easier to use with no issues with cables and them being considerably cheaper. Previous tests have been conducted to analyze the performance of MEMS (Micro Electro Mechanical Systems) sensor in sinusoidal excitation tests. This paper analyzes the performance of in-built MEMS sensors in devices by comparing with an ICP sensor as the reference. Earthquake input amplitude excitation in shaking table tests was done. Results show that MEMS sensors are more accurate in measuring higher input amplitude measurements which range from 100gal to 250gal than at lower input amplitudes which range from 10gal to 50gal. This confirms the results obtained in previous sinusoidal tests. It was also seen that natural frequency results have lower error values which range from 0% to 3.92% in comparison to the response spectra results. This also confirms that in-built MEMS sensors in mobile devices are good at estimating natural frequency of structures. In addition, it was also seen that earthquake input amplitudes with more frequency contents (Gyeongju) had considerably higher error values than Pohang excitation tests which has less frequency contents.

Compensation of Cross Talk Error for Optical Voltage Sensors

  • Cho, Jae-Kyong
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.177-182
    • /
    • 2007
  • This paper discusses the errors associated with electric field cross talk for optical voltage sensors in a three-phase electric system and provides a solution to compensate the errors. For many practical conductor configurations, the electric field cross talk may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the cross talk and built an electronic circuits based on it. The mechanism of the compensation and the corresponding error reduction were discussed.