• Title/Summary/Keyword: building structural systems

Search Result 666, Processing Time 0.032 seconds

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

Efficient Structral Safety Monitoring of Large Structures Using Substructural Identification (부분구조추정법을 이용한 대형구조물의 효율적인 구조안전도 모니터링)

  • 윤정방;이형진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.1-15
    • /
    • 1997
  • This paper presents substructural identification methods for the assessment of local damages in complex and large structural systems. For this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for a substructure to process the measurement data impaired by noises. Using the substructural methods, the number of unknown parameters for each identification can be significantly reduced, hence the convergence and accuracy of estimation can be improved. Secondly, the damage index is defined as the ratio of the current stiffness to the baseline value at each element for the damage assessment. The indirect estimation method was performed using the estimated results from the identification of the system matrices from the substructural identification. To demonstrate the proposed techniques, several simulation and experimental example analyses are carried out for structural models of a 2-span truss structure, a 3-span continuous beam model and 3-story building model. The results indicate that the present substructural identification method and damage estimation methods are effective and efficient for local damage estimation of complex structures.

  • PDF

An Experimental Study on Simple Tension Connections for Square CFT Column to Beam Using Internal Plate with Holes (내부유공판을 사용한 각형 CFT 기둥-보 단순인장 접합부의 실험적 연구)

  • Lee, Seong Hui;Jung, Hun Mo;Yang, Il Seung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.575-583
    • /
    • 2009
  • As the height of buildings rises, new structural systems are being applied other than theexisting S, RC, and SRC to decrease the weight of buildings and to make their construction more efficient, CFT structureshad been applied in many building construction projects due to their superior structural performance and construction efficiency. CFT structures need a diaphragm to harmoniously transmit the beam flange load to the column and the opponent beam in connections. Especially, on the right and left sides of the column other beams are connected, The establishment of a diaphragm for the lower part flange load delivery of the beam and guarantee for concrete filing capacity difficulty have (What does this mean?). In this paper, connection details are proposed in the form of a welded vertical plate with a circular hole on the CFT column's interior to harmoniously transmit the lower-part beam flange load to the column and the opponent beam. Thesediaphragm details use the concrete anchor effect in the beam flange load delivery, with the concrete-filled CFT column interior piercing the hole of the perforated plate, and a perforated board is established vertically to improve the concrete filling capacity. To analyze the structural performance of the proposed connection details, five simple tension specimens were made with the following parameters: with our without vertical and horizontal perforated plates, shear hole number, concrete filled or not, thickness of the perforated plate, etc. Then experimental tests were performed on these specimens.

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis (비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.9-20
    • /
    • 2014
  • Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall (케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구 )

  • Tae-Min Lee;Sung Tae Kim;Young-Taek Kim;Jiyoung Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.40-48
    • /
    • 2023
  • In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

A Structural Analysis between Overseas Opening of Geospatial Information and the Promotion of Geospatial Information Industry Using the Systems Thinking (시스템 사고를 통한 지도데이터 국외개방과 공간정보 산업 활성화간 인과구조 분석)

  • Yi, Mi Sook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • South Korea has been reluctant to open its geospatial information overseas to ensure security as a divided country. However, this cannot continue as the domestic and international environments related to geospatial information and the industrial ecosystem of information and communication technologies have been changing dramatically. Within this context, this study aims to analyze the causal relations among relevant variables and how they change and interact with time using a systems thinking process. First, causal maps were created for the domains of national security, map-based convergence service, and corporate competition. Then, the causal maps for each domain were integrated, based on which the points for policy intervention and dominant feedback loops were identified. The analysis results showed that securing the self-sufficiency of domestic geospatial businesses is a key element to determine the whole causal map, and the variable that changes the dominant feedback loop from a vicious circle to a virtuous one is the decision to open geospatial information overseas. In this study, I found the policy leverage that is a policy intervention point that can produce a great effect with little input by building a causal map of the interactions between major variables. This study is significant in that it identified and analyzed the dominant feedback loop as to which causal structure would dominate the system in the long term. The results of this study can be used to discuss not only the impacts of map data overseas opening on the national security and geospatial information industry, but also the interactions in the future when Google or other global companies request to release the geospatial information.

The Relationship between the User's Perception of Socio-cultural Attributes and the Spatial Structures of Dwelling Spaces - a Comparative Study between Korean and German Housings - (거주자의 대 사회적 개념과 주거공간의 영역별 구성체계와의 관계 - 한국과 독일의 주거형태학적 비교관찰을 통하여 -)

  • 전남일
    • Journal of the Korean housing association
    • /
    • v.13 no.5
    • /
    • pp.31-42
    • /
    • 2002
  • This comparative study between Korean and German housings aims at understanding different structural systems in the indoor and outdoor spaces, depending upon the user′s perception of the socio-cultural attributes. The analysis starts with four alternative contrary assumptions, that appear in morphological forms of dwelling; 1) linear distribution vs. areal distribution of residential districts, 2) mirror system vs. comb system in the layout of plot plans 3) organization of front vs. back outdoor spaces and 4) opening vs. closing in the indoor spaces. A clear difference is found between Korean and German samples in view of public and private relationships between indoor and outdoor spaces as well as the intermediate space. In the korean housing there always exists a symbolic and psychological territory of a certain sphere. On the other hand, outdoor space passes through various phases only to form a certain hierarchy even in a private space and, thereby, sets a boundary between private and public areas. In the case of Germany, the building itself draws a clear line between private and public outdoor spaces, and therefore the outdoor space has a "front" and "back". Thus, Germany′s private space may face a genuine public space and street, which is rare in the Korean housing. Although the layout of indoor space in the korean housing tends to be open, such an openness may be outstanding in living and dining spaces, kitchen and various accesses to rooms. In the case of Germany, such indoor spaces are usually closed to each other. Thus corridors act to separate these spaces. Such differences are analysed to be due to the different perceptions of interpersonal and socio-cultural attributes as intra-family and inter-neighbor relationships or communications.

Optimum Configuration of Gutters for Glasshouses Using ANSYS and ADAMS (ANSYS/ADAMS를 이용한 유리온실 최적의 Gutter 형태 설계)

  • Kim, Jin-Soo;Ouk, Sokunthearith;Lim, Su-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • A gutter is generally a fixed beneath the edge of a roof to carry off rainwater, or a narrow trough that collects rainwater from the roof of a building to diverts it from the structure, typically into a drain. Reasonable designs reduce the mass of the gutters (~ 16.9%), make it faster and easier to assemble, and gives it consistent strength and integrity (about 10%). New gutter systems are presented according to the results of structural analyses performed by ANSYS and ADAMS/Durability Hot Spots. In addition, the CATIA program can improve the precision of the 3D system simulations. The design of a gutter system installations also needs to comply with the specific rainfall intensities and adequate overflow provisions needs to be provided to prevent water from sides of the roofs during heavy rainfall periods. The principle outcome of this work is a computational design tool that can be used to improve the gutter performance considering a variety of factors (gutter geometry, drainage and rainfall intensity). A good gutter design must satisfy many criteria, including durability, low cost, and ease of repair and cleaning.